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Foundations for mathematics

Mathematics is usually founded on
We use an alternative:

Type theory [Martin-Lof 1972]

Mathematical constructions and reasonings are interpreted as

and in them.
N 0
N—N Ax:N).x+2
(x :N) x (y:N)x (x=2y) (6,3, refl)
(n:N) = (p:N) x (pis prime) x (p > n) —
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Abundance of models for type theory

Two relevant flavors:
Computational models [Curry-Howard 1969]

Terms are interpreted as computer programs.

Homotopical models [Awodey, Warren 2009]

Types are interpreted as spaces, with equality interpreted as paths.

Easy to build from (presheaf, slice, gluing...).
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Abundance of models: a double strength

Assume given a C.

Direct application

Any proof in type theory can be in C.
The model C also interprets

Reverse application

can be safely added to type theory.
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Example: Univalence

Spaces that can be are
in a homotopical context.

Consequence

In a homotopical model, types are

This is called the univalence axiom.
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Example: Parametricity

Programs treat their input uniformly.

Consequence [Reynolds 83]

Some computational models enjoy a principle called parametricity.

Definition
A model of type theory is called parametric if:
Any type comes with

Any term respects
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Cubical structure

A semi-cubical structure on a type X consists of:

For any x,y : X, between them.

For any four paths drawing a square, for this
square.

And so on.

This structure originates from a homotopical context [Kan 1955].
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Cubical models

Observation

(Variants of) cubical structures arise naturally when trying to build
models for (variants of) parametricity.

A presheaf model of parametric type theory.
[Bernardy, Coquand, Moulin 2015]

Cubical categories for higher-dimensional parametricity.
[Johann, Sojakova 2017]

Internal parametricity for cubical type theory.
[Cavallo,Harper 2020]

Question

How can we explain this phenomenon?

Dealing with many variants of cubes is part of the challenge.
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A first remark

In a parametric model any type comes with
But is itself a type, so it comes with

And so on.

Basic insight

This iteration gives a semi-cubical structure.
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Overview

We develop a theory for variants of parametricity, such that:
Auxiliary thesis

Given a model C, there is a 'largest’ parametric model in C.
In category theory, such a model is called cofreely parametric.

Main thesis

Cubical models are cofreely parametric.
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We present two frameworks:
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Contributions

We present
1. Parametricity as an extension by section

An extension by section adds
to a theory.

The functor forgetting these operations has a
Examples of extensions by section:
Parametricity for clans.
Parametricity for categories with families.
Parametricity for categories with families with arrow types and
a universe.

13



2. Parametricity as a module structure

Use a symmetric monoidal closed category of models.
Define parametric models as modules.
Describe cofreely parametric models as cofree modules.

Examples of cofree modules:

Categories of cubical objects, for any kind of cubes.
Lex categories of truncated cubical objects.
Clans of Reedy fibrant cubical objects.
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2. Parametricity as a module structure

Use a category of models.
Define parametric models as
Describe cofreely parametric models as

Examples of

Categories of cubical objects, for any kind of cubes.
Lex categories of truncated cubical objects.
Clans of Reedy fibrant cubical objects.

Both frameworks cover many examples unrelated to parametricity.
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The origins of parametricity

By :
System F is parametric [Reynolds 83].

Various type theories are parametric
[Bernardy, Jansson, Paterson 2010], [Keller, Lasson 2012], - - -

Parametricity and semi-cubical types [Moeneclaey 2021]

Axiomatized parametricity as

Proved that cofreely parametric models exist.

In this part we give an alternative presentation.
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Define categorical extensions by section.

Extensions by section give categorical extensions by section.
Categorical extensions by section have right adjoints.

Parametricity is an extension by section of categories with
families (with arrow types and a universe).
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Plan for Part 1

Overview on

Define
Define
give
have right adjoints.
Parametricity is an of categories with

families (with arrow types and a universe).

Conclusion

Cofreely parametric categories with families (with arrow types and
a universe) exist.

17
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Inductive definitions

We introduce for
[Kaposi, Kovacs, Altenkirch 2019], [Kovécs, Kaposi 2020].
Definition
Signatures are with:
Product, unit and extensional identity types.
A universe U closed under them.

Arrow types with domain in /.

Example: Signature for semi-groups

A U
m: A=-A=A
— = (xy,z:A) = m(x,m(y,z)) = m(m(x,y), z)
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We can define inductively on a signature I
The category Algr of its algebras.
The type Dispr(X) of displayed algebras over X : Algr.
The type Secr(X, Y) of sections of Y : Dispr(X).
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We can define inductively on a signature I

The category Algr of its algebras.

The type Dispr(X) of displayed algebras over X : Algr.

The type Secr(X, Y) of sections of Y : Dispr(X).

We have:
Dispr(X) =~ {Morphism with target X}
Secr(X,Y) =~ {Section of this morphism}

Example with ' = (A : U)
Then X : Algay is simply a type X and we get:

(Y:X—=U) =~ (X :U)x(p: X' = X)
(x:X) = Y(x) = (g:X—=X)x(pog=idx)

19



Quotient inductive-inductive types (QIITs)

Definition
A QIIT is an algebra X such that any displayed algebra over X
has a section.
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Quotient inductive-inductive types (QIITs)

Definition
A QIIT is an algebra X such that any displayed algebra over X
has a section.

Intuition

Displayed algebras are inductive definitions.

Sections are inductively-defined operations.
X is a < X is an [Sojakova 2015].

Question

Why such a complicated reformulation for initiality?

20
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U

X

y: X=X
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Example: Natural numbers

The formulation using QIIT is

Signature XU x: X y: X=X
QUT N: Type 0:N s:N— N

Displaved | b, Type 01 P(0) s : P(n) = P(s(n))
algebra

Section e:(n:N)—= P(n) e(0)=0" e(s(n)) =5s'(e(n))

21
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This A is an inductive definition,

22



Extension by section

Let A be a displayed algebra over I,

Intuition

This A is an inductive definition,

Parametricity was introduced as such an inductive definition.

22



Extension by section

Let A be a displayed algebra over I,

Intuition

This A is an inductive definition,
Parametricity was introduced as such an inductive definition.

Definition

The extension of I by a section of A is an extension by section.

This extension adds inductively-defined operations.

22



Categorical extension by section

Definition

A copointed endofunctor on a category V consists of:
An endofunctor E : ¥V — V.
A natural transformation d : E — Id.

So any C : V comes with d¢ : E(C) — C.
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Categorical extension by section

Definition

A copointed endofunctor on a category V consists of:
An endofunctor E : V — V.
A natural transformation d : E — Id.

So any C : V comes with d¢ : E(C) — C.

Definition

A coalgebra for (E, d) is an object C : V with a section of d.

Definition

A is a forgetful functor of the form:

CoAlgy(E,d) — V

where V has limits and E commutes with them.

23



Categorical extension by section from extension by section

Display algebra A over ' Copointed endofunctor
internal to signature (E.d) of Algr
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Categorical extension by section from extension by section

Display algebra A over ' Copointed endofunctor

internal to signature (E.d) of Algr
Algebra for X : Algr
I" plus a section of A with a section of dy.

Functor forgetting the section  CoAlg(E,d) — Algr

24
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Constructing cofree objects

Theorem [folklore, e.g. Kelly 80]

Any categorical extension by section has a

This sends C : V to the
E?(dc)
E(de)— / ~
C%dc—E(C)i (de) E2(C)%E(df(c) E3(C)
deey—— g,
E2(C)

Gives a right adjoint by the

25
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Example: Categories

Definition

A parametric category is a category C equipped with:
An endofunctor _, : C — C.
Morphisms do, dll : . — I natural in I".

Proposition

Parametricity is an extension by section of categories.

Proposition

Cofreely parametric categories exist.

26



Example: Categories with families

A category with families [Dybjer 1995] with and
is called parametric if it is equipped with:

—

: Ob) — Ty(lo,T1)

: Hom([', A)) — Tm((Fo,T1,T%), Aifoo, o1])
: Ty(F)) = Ty(To, 1, T, Ao, A1)

a: Tm(l,A)) — Tm((To,T1,T4), Alao, a1])

|
*

with equations defining _, inductively on any constructor.

types
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Example: Categories with families

A category with families [Dybjer 1995] with and

types
is called parametric if it is equipped with:

—

: Ob) — Ty(lo,T1)

o : Hom(I',A)) — Tm((To,T1,T4), Asfoo, 01])
A:Ty() — Ty(To, 1, s, Ao, A1)

a: Tm(l,A)) — Tm((To,T1,T4), Alao, a1])

I
*
—_~ o~~~

with equations defining _, inductively on any constructor.

Proposition

Cofreely parametric categories with families exist.
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Example: Adding arrow types and a universe

Adding types and a works fine with parametricity.
For example we can define:

(A - B)*(fo7 fl) = (X07X1 : A) - A*(X07X1) - B*(fO(XO)a fl(Xl))
Z/{*(Ao,Al) = A() — A1 —U
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Example: Adding arrow types and a universe

Adding types and a works fine with parametricity.
For example we can define:

(A - B)*(fo7 fl) = (X07X1 : A) - A*(X07X1) - B*(fO(XO)a fl(Xl))
Z/{*(Ao,Al) = A() — A1 —U

Proposition

Cofreely parametric categories with families with arrow types and a
universe exist.
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A problem with reflexivities and arrow types

To use internal parametricity, where any type comes with a
, We try to add:

refl = ([:0b) — Tm((x:T),T[x,x])
refl = (o : Hom(l',A)) — ox[reflr] = reflao]
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A problem with reflexivities and arrow types

To use internal parametricity, where any type comes with a
, We try to add:

refl = ([:0b) — Tm((x:T),T[x,x])
refl = (o : Hom(l',A)) — ox[reflr] = reflao]

We do not know how to define:

reflAHB = 7

ref/E/(X) =

In we consider models without types or a

29



Parametricity as a Module Structure
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An alternative approach

Using has drawbacks:
Each example requires tedious work.

Hard to prove that cubical models are cofreely parametric,
because cofreely parametric models are complicated limits.
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An alternative approach

Using has drawbacks:
Each example requires tedious work.

Hard to prove that cubical models are cofreely parametric,
because cofreely parametric models are complicated limits.

We alleviate these using a category of

models.
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Plan for Part 2

Revisit parametric categories for inspiration.

Axiomatize parametric models as in a
category.

Give a convenient description for

Prove that the following are

Categories of (many variants of) cubical objects
Clans of Reedy fibrant cubical objects.

Conclusion

These cubical models are cofreely parametric.

Remark

Use a of clans to get a
structure.

32



Back to parametric categories

Definition
A parametric category is a category C equipped with:
An endofunctor

Two natural transformations
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Let [] be the free strict monoidal category generated by:
An object

Two morphisms
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Back to parametric categories

Definition
A parametric category is a category C equipped with:
An endofunctor

Two natural transformations

Definition
Let [] be the free strict monoidal category generated by:
An object

Two morphisms

Functors from [ to C are semi-cubical objects in C.
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Let M be a strict monoidal category.
Definition

An M-module is a category C with a strict monoidal functor:

a : M — Ende
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Let M be a strict monoidal category.

Definition

An M-module is a category C with a strict monoidal functor:

a : M — Ende

Proposition

Parametric categories are equivalent to [ -modules.

In a [J-module C, any X comes with:

F : O—=C
Fi) = ali(X)

giving a semi-cubical object with X as object of points.

34



Parametric models as modules

Let V be a

category.

35



Parametric models as modules

Let V be a
Definition
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M in V.
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Let V be a
Definition
A notion of parametricity for V is a

Definition
An M-parametric model is an M-

category.

M in V.
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Parametric models as modules

Let V be a category.
Definition

A notion of parametricity for V is a Min V.
Definition

An M-parametric model is an M-

Example

D/-“—«

M =
{M-modules} = {Parametric categories}

35



Cofreely parametric models

Theorem [folklore, e.g. Pareigis 77]

forgetful functor

>

% 1 {M-modules}
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Cofreely parametric models

Theorem [folklore, e.g. Pareigis 77]

forgetful functor

>

% 1 {M-modules}

Sketch of proof

We prove this for sets. But the proof is so it works in V.

Example

Categories of semi-cubical objects are cofreely parametric.

36
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Monoidal category

Parametricity

Shape
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Shape

I—1 Unary

Augmented semi-simplices

— Internal
I==1

Cubes

I——=1+—J] Biparametricity
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Variants of parametricity for categories

Monoidal category = Parametricity

Shape

I—1 Unary

Augmented semi-simplices

— Internal
I==1

Cubes

I——=1+—J] Biparametricity

Semi-bicubes

37



Clans as models of type theory

In a clan, types are represented by fibrations.
Proposition

The category of is
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Clans as models of type theory

In a clan, types are represented by fibrations.
Proposition

The category of is

Lemma
A notion of parametricity for strict clans consists of:
A strict clan M.

A strict monoidal product on M commuting with limits in
each variable.

Such that any p: A—T and g : B — A induce a fibration:

pOg : ARB—-AQRA x T®B
rea
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Parametric clans and Reedy fibrant cubes

Definition

Let (. be the free monoidal strict clan generated by:

I—'s1x1
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Parametric clans and Reedy fibrant cubes

Definition

Let (. be the free monoidal strict clan generated by:

I—'s1x1

Proposition

Clans of Reedy fibrant semi-cubical objects are
cofreely [.-parametric.
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Parametric clans and Reedy fibrant cubes

Definition

Let (. be the free monoidal strict clan generated by:
I—%1x1

Proposition

Clans of Reedy fibrant semi-cubical objects are
cofreely [.-parametric.

Proof sketch

Fibrations in [, are generated by the maps:
HORE O

which send a cube to its border.
39



Further work

Remove
models of type theory.

by using a

of
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40



Further work

Remove by using a of
models of type theory.

Generate Kan cubical structures as cofreely parametric.

Strategy

Axiomatize that Kan fibrations are stable by type constructors.
Mix with types and a , inspired by:

Lemma

Let C be a category exponentials and ,
then for any category [J, the category C” has exponentials.

40
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