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Two different equalities in dependent type theories

There are the usual judgmental equalities (which are decidable).

To be able to use induction we need propositional equalities.
Roughly :

For any type A and x , y : A, we have an identity type x =A y .

We have a canonical inhabitant of x =A x .

If x =A y is inhabited, then we can substitute x by y .
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Extensional type theory

How do these identity types look like ?

Extensional type theories

Any type x =A y has at most one element.

This rule is not derivable.

Are there meaningful axioms which implies non-trivial identity
types ?
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Homotopy type theory

It is an extension of dependent type theory.

Two features

Univalence axiom

Higher inductive types

Univalence implies non-trivial identity types.

It has a topological interpretation.
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Higher inductive types

Intuition

We generate inductively :

a type H,

its identity types x =H x ′,

its identity types of identity types p =x=Hx ′ p
′,

etc...

So the type H has constructors building paths, surfaces, ...
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Higher inductive types of level n

Terminology:

point constructors for H (level 0)

path constructors for x =H x ′ (level 1)

surface constructors for p =x=Hx ′ p
′ (level 2)

etc...

n-hits only have constructors of level ≤ n.

We deal with 2-hits only.
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Examples of 1-hits

Example : Constructors for combinatory logic CL

K : CL

S : CL

app : CL→ CL→ CL

Kconv : (x , y : CL)→ app(app(K, x), y) =CL x

Sconv : (x , y , z : CL)→ app(app(app(S, x), y), z) =CL

app(app(x , z), app(y , z))

Semantically, it is natural to interpret CL as a setoid (i.e. a set
with an equivalence relation on it).
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Example : Circle S1

base : S1

path : base =S1 base

As a setoid it would be trivial.

Semantically, it is natural to interpret S1 as some topological
object.
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Groupoids

Definition

A groupoid is a category where all morphisms are invertible.

How can these be topological objects ?

The fundamental groupoid

To a space X we associate its fundamental groupoid π(X ) :

objects are the points of X ,

morphisms are path up to continuous deformations.

The fundamental groupoid π(C ) of the topological circle C is not
trivial.
The hit S1 will be interpreted as (equivalent to) π(C ).
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Plan

We will give a definition for some finitary 2-hits and interpret them
in the groupoid model of type theory.

Remark

Officially we work in set theory, although we conjecture our work
can be done in extensional type theory.
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Point constructors for H

Usual constructors for an inductive type T

(x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ (B1,1(x1, . . . , xm)→ · · · → B1,k1(x1, . . . , xm)→ T)

→ · · ·
→ (Bn,1(x1, . . . , xm)→ · · · → Bn,kn(x1, . . . , xm)→ T)

→ T

Where T is not occurring in Ai and Bj ,l .

We restrict to finitary hits, i.e. we assume :

Point constructors for a finitary hit H

c0 : (x1 : A1)→ · · · → (xm : Am(x1, . . . , xm−1))

→ H→ · · · → H→ H
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Path constructors for H

Path constructors for a finitary hit H

c1 : (x1 : C1)→ · · · → (xn : Cn(x1, . . . , xn))

→ (y1 : H)→ · · · → (yn′ : H)

→ p1(x1, . . . , xn, y1, . . . , yn′) =H q1(x1, . . . , xn, y1, . . . , yn′)
...

→ pn′′(x1, . . . , xn, y1, . . . , yn′) =H qn′′(x1, . . . , xn, y1, . . . , yn′)

→ p′(x1, . . . , xn, y1, . . . , yn′) =H q′(x1, . . . , xn, y1, . . . , yn′)

Remark :

H appearing anywhere in Ci contradicts univalence.
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A simplified schema

Constructors for a 2-hit H

c0 : A→ H→ H

c1 : (x : B)→ (y : H)→ p(x , y) =H q(x , y)

→ p′(x , y) =H q′(x , y)

c2 : (x : D)→ (y : H)→ (z : p3(x , y) =H q3(x , y))

→ g1(x , y , z) =p4(x ,y)=Hq4(x ,y) h1(x , y , z)

→ g2(x , y , z) =p5(x ,y)=Hq5(x ,y) h2(x , y , z)

Where :

A,B,D are types without H.

p, q, p′, q′, p3, q3... are point constructor patterns.

g1, h1, g2, h2 are path constructor patterns
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Point and path patterns

Point constructor patterns

p ::= y | c0(a, p)

with y : H and a : A without H.

Path constructor patterns

g ::= z | c1(b, p, g) | id | g ◦ g | g−1

with z : p3 =H q3 and b : B without H.
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Elimination principle

For x : H ` C (x), how can we use induction to define
f : (x : H)→ C (x) ?

We can define f by pattern matching :

f (c0(x , y)) = c̃0(x , y , f (y))

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))

apd2
f (c2(x , y , z , t)) = c̃2(x , y , f (y), z , apdf (z), t, apd2

f (t))

These are judgmental equalities.
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With suitable c̃0, c̃1, c̃2, we can show this schema is well typed
using

apdf (id) = id

apdf (p ◦ q) = apdf (p) ◦′ apdf (q)

apdf (p−1) = apdf (p)−1′

These equations are valid in the groupoid model.
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What are c̃0, c̃1 and c̃2 ?

We will ask :

f (c0(x , y)) = c̃0(x , y , f (y))

What is c̃0 ?

c̃0 : (x : A)→ (y : H)→ C (y)→ C (c0(x , y))
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We will ask :

apdf (c1(x , y , z)) = c̃1(x , y , f (y), z , apdf (z))

What is c̃1 ?

c̃1 : (x : B)→ (y : H)→ (ỹ : C (y))

→ (z : p =H q)→ T0(p) =C
z T0(q)

→ T0(p′) =C
c1(x ,y ,z) T0(q′)

T0(p) is the lifting of p (meant to be f (p)) defined by :

T0(y) = ỹ

T0(c0(a, p)) = c̃0(a, p,T0(p))
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What is c̃2 ?

c̃2 : (x : D)→ (y : H)→ (ỹ : C (y))→ (z : p3 =H q3)

→ (z̃ : T0(p3) =C
z T0(q3))→ (t : g1 =p4=Hq4 h1)

→ T1(g1) =
T0(p4)=HT0(q4)
t T1(h1)

→ T1(g2) =
T0(p5)=HT0(q5)
c2(x ,y ,z,t) T1(h2)

Where T1(g) is the lifting of g (meant to be apdf (g)) defined by :

T1(z) = z̃

T1(c1(x , y , g)) = c̃1(x , y ,T0(y), g ,T1(g))

T1(id) = id

T1(g ◦ g ′) = T1(g) ◦′ T1(g ′)

T1(g−1) = T1(g)−1′
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Alternate presentation of groupoids

Definition

A groupoid is a triple :
(A0,A1,A2)

where

A0 is the underlying set.

For x , x ′ ∈ A0, we have A1(x , x ′) the set of morphisms
between x and x ′.

For f , f ′ ∈ A1(f , f ′), we have A2(f , f ′) inhabited iff f = f ′.

together with witnesses of the usual groupoid laws.

24/31



Introduction to higher inductive types Schema for finitary 2-hits Interpretation in the groupoid model

Groupoid model

We use the groupoid model.
Some correspondences :

` C C is a groupoid

x : A ` C (x) C is a functor from A to the
category of groupoids

` f : A→ B f is a functor from A to B

` f : (x : A)→ C (x) f is a dependent
functor between groupoids
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Sketch of the interpretation

Assume H given, we want to show it can be interpreted in the
groupoid model.

1 We will build the groupoid (H0,H1,H2) using inductive
definition.

2 We do so by building first H0, then H1 and finally H2.
We can do this because we deal with finitary hits.

3 Then we check that the introduction, elimination and equality
rules are validated by this interpretation.
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H0

Inductively generated by the underlying function of c0

c00 ∈ A0 → H0 → H0

H1

Inductively generated by

The underlying function of c1

c10 ∈ (x ∈ B0)→ (y ∈ H0)→ H1(p0(x , y), q0(x , y))

→ H1(p′0(x , y), q′0(x , y))

The action of c0 on paths
c01 ∈ (x , x ′ ∈ A0)→ A1(x , x ′)→ (y , y ′ ∈ H0)

→ H1(y , y ′)→ H1(c00(x , y), c00(x ′, y ′))

and ◦, id, (−)−1.
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H2

Inductively generated by

c20 – the underlying function of the surface constructor.

c11 – the action on paths of the path constructor.

c02 – the action on surfaces of the point constructor.

witnesses of the functor laws for the point constructor.

witnesses of the groupoid laws.
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Elimination principle

We need to check that given x : H ` C (x) and suitable constructor
c̃0, c̃1, c̃2 we are able to build a function f : (x : H)→ C (x).

1 We build the underlying function f0 by induction on H0.

2 We build the action on arrows f1 by induction on H1.

3 We show f preserves equalities of paths by building f2 using
induction on H2.

The judgmental equality for f are immediate from its definition.
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Why finitary hits ?

Assume a constructor

c0 : (A→ H)→ H

Then H0 should have a constructor like

c00 ∈ (f0 ∈ A0 → H0)

→ (f1 ∈ (a, b ∈ A0)→ A1(a, b)→ H1(f0(a), f0(b)))

→ · · ·
→ H0

So H0 and H1 are generated at the same time.
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Further work

This work should be implemented in some proof assistant :

We should prove the schema is well-typed.
We should prove the groupoid model is correct.

It is probably possible to extend this method to infinitary hits,
perhaps using inductive-inductive definition in the model.

How can point and path constructor patterns be generalised ?

Can this method be extended to n-hits for arbitrary n ?

Can this method be extended to ∞-hits, using e.g. Kan
cubical sets ?

Are finitary higher inductive types consistent relatively to
inductive families ?
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