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A semantical point of view [Dybjer 95]

Definition

A model of type theory consists of:

I A collection of contexts.

I For any context Γ, a collection of types over Γ.

I For any type A over Γ, a collection of terms in A.

with a lot of structure (substitutions, Π, Σ, > and U).

Such models can be considered as mathematical universes.
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Elementary models:

I The set model is the usual mathematical universe.

I The initial model has syntactic objects as terms.

And many more:

I Sheaf models.

I Realizability models.

I Homotopic models (e.g. Kan cubical sets).

I ...

Slogan

The abundance of models makes the strength of type theory.

4



Elementary models:

I The set model is the usual mathematical universe.

I The initial model has syntactic objects as terms.

And many more:

I Sheaf models.

I Realizability models.

I Homotopic models (e.g. Kan cubical sets).

I ...

Slogan

The abundance of models makes the strength of type theory.

4



Elementary models:

I The set model is the usual mathematical universe.

I The initial model has syntactic objects as terms.

And many more:

I Sheaf models.

I Realizability models.

I Homotopic models (e.g. Kan cubical sets).

I ...

Slogan

The abundance of models makes the strength of type theory.

4



Using this in practice

Proof assistants like Coq and Agda implement an initial model.

So there is a rich interaction between models and proof assistants:

A formal proof ⇒ One theorem per model.

A model ⇒ An extension of the proof assistant.
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Parametricity for the initial model [Bernardy et al. 2010]

We can define operations ∗ in the initial model:

Γ ` gives Γ0, Γ1 ` Γ∗
Γ ` A gives Γ0, Γ1, Γ∗,A0,A1 ` A∗

Γ ` a : A gives Γ0, Γ1, Γ∗ ` a∗ : A∗(a0, a1)

by induction using equations (E ) summarized next slide.

Application: Theorems for free! [Wadler 89]

For t a term, t∗ gives information on its behavior.

Definition

An extension of type theory by unary operations defined inductively
in the initial model is called an interpretation.

7



Parametricity for the initial model [Bernardy et al. 2010]

We can define operations ∗ in the initial model:

Γ ` gives Γ0, Γ1 ` Γ∗
Γ ` A gives Γ0, Γ1, Γ∗,A0,A1 ` A∗

Γ ` a : A gives Γ0, Γ1, Γ∗ ` a∗ : A∗(a0, a1)

by induction using equations (E ) summarized next slide.

Application: Theorems for free! [Wadler 89]

For t a term, t∗ gives information on its behavior.

Definition

An extension of type theory by unary operations defined inductively
in the initial model is called an interpretation.

7



Parametricity for the initial model [Bernardy et al. 2010]

We can define operations ∗ in the initial model:

Γ ` gives Γ0, Γ1 ` Γ∗
Γ ` A gives Γ0, Γ1, Γ∗,A0,A1 ` A∗

Γ ` a : A gives Γ0, Γ1, Γ∗ ` a∗ : A∗(a0, a1)

by induction using equations (E ) summarized next slide.

Application: Theorems for free! [Wadler 89]

For t a term, t∗ gives information on its behavior.

Definition

An extension of type theory by unary operations defined inductively
in the initial model is called an interpretation.

7



Equations (E ) summarized

(A× B)∗((x0, y0), (x1, y1)) = A∗(x0, x1)× B∗(y0, y1)

(A→ B)∗(f0, f1) = Π (x0, x1 : A). A∗(x0, x1)→ B∗(f0(x0), f1(x1))

U∗(A0,A1) = A0 → A1 → U
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Parametricity for any model of type theory

Definition

A parametricity for a model of type theory consists of operations

∗ obeying equations (E ).

A parametricity means terms treat type inputs uniformly.

Examples

The initial model is parametric.
The set model is not (assuming LEM).

Goal

We want to build models with parametricity from arbitrary ones.
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Parametricity and cubes

When defining (internal) parametricity, cubical structures arise:

I [Bernardy, Coquand, Moulin 2015]

I [Cavallo, Harper 2018]

Claim

There is a general procedure:

{Interpretations of type theory} → {Structures on types}

sending (external) parametricity to semi-cubical structures.
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A semi-cubical set

Starting from a context and

consists of:

applying parametricty we get:

A set of points

Γ `

For any two points

Γ0, Γ1 ` Γ∗

a set of paths between them

For any square S

Γ00, Γ01, Γ0∗, Γ10, Γ11, Γ1∗, Γ∗0, Γ∗1

a set of surfaces with border S

` Γ∗∗

· · ·

· · ·

So we guess semi-cubes model parametricity.
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Main result

Theorem

The functor forgetting parametricity:

U : {Models with parametricity} → {Models of type theory}

has a right adjoint:

Cube : {Models of type theory} → {Models with parametricity}

Indeed Cube(C) is the model of semi-cubes in C.
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Sketch of proof

Let T be a finitary essentially algebraic theory, IT its initial algebra.

Lemma

Let O a set of unary operations inductively defined on IT by
equations E . Then the forgetful functor:

U : AlgT ,O,E → AlgT

has a right adjoint.

We use colimits in AlgT defined as QIITs. Then U commutes with:

I Initial objects almost by hypothesis.

I Pushouts because O is unary.

I Filtered colimits as T , O and E are finitary.

So U has a right adjoint.
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Other examples of right adjoints

The hypothesis of the previous lemma are often satisfied.

Example

The forgetful functor from groups to monoids has a right adjoint:

Cube : M 7→ M×

Example

The forgetful functor from {X : Set | f : X → X} to sets has a
right adjoint:

Cube : X 7→
(
N→ X with (un) 7→ (un+1)

)
Many other right adjoints can be constructed the same way.
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Semi-cubes
Let C be a model of type theory.
Let IX be the parametric model freely generated by X a context.

Adjunction equation

CtxCube(C) = Homparam(IX ,Cube(C)) = Hom(U(IX ), C)

But U(IX ) is freely generated by:

X `
X0,X1 ` X∗

X00,X01,X0∗,

X10,X11,X1∗, ` X∗∗

X∗0,X∗1
...
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Conclusion and further work

Summary:

I We build semi-cubical models from parametricity.

I The method works for any interpretation.

Further work:

I Applications to other interpretations for type theory.

For specialists, I intend to:

I Find an interpretation giving Kan cubical types, starting in
low dimension (i.e. with setoids).

I Build definitionally univalent models from univalent ones
using [Tabareau, Tanter, Sozeau 2017].
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