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Computing with univalence

Features of Cubical Type Theory [Cohen, Coquand, Huber,
Mortberg 2016]
Apart from an abstract interval, it has:

» Connections allowing to degenerate a path to a square.

» Reversal allowing to go through a path backward.

» Kan compositions generalizing the concatenation of paths.

> Glue types, necessary to prove univalence.

Theorem [Huber 2018]
Cubical Type Theory enjoys canonicity.



In this talk

We present an ongoing attempt to build a variant of Cubical Type
Theory where we have univalence by definition:

(A=y B) = (A~ B)

We mainly use ideas from parametricity.



Parametricity

Intuition
Terms built in type theory depend nicely on their type inputs.

Formally: terms send related inputs to related outputs
[Reynolds 83].

Applications: Theorems for free! [Wadler 89]

Deduce a result on a polymorphic term from its type.



An example of parametricity

Assume given Xp, X1 : U and X, : Xo — X1 = U.

Definition

For any simple type A built from X we extend X, to:
A AIX/Xo] = AIX /X = U

by:
(Ax B)i((a,d), (b, b)) = Aia,a) x Bs(b,b)

(A= B)(f,g) = (x0:A0)— (a: A1)
— Ax(x0,x1) = Bi(f(x0), g(x1))



Parametricity result
For any simple type A built from X and a such that:
Fa:A
there exists a, such that:
Foa, o Ac(a[ X/ Xo], a[ X/ X1])

Can be extended to PTS and inductive types [Bernardy, Jansson,
Paterson 2010], the crucial point being:

U(AB) = A»B—U



Internal parametricity

Parametricity is external, but it can be internalized.

Parametric Type Theory [Bernardy, Coquand, Moulin 2015]

Strikingly similar to Cubical Type Theory.
We denote by x ~4 y the analogue to path types. We have the
relativity axiom, in this case:

(A~y B) = (A= B—=U)

where _ = _ stands for definitional isomorphism.

They use predicates rather than relations.



Parametricity and higher dimensional type theory

Ideas flow both ways:

Examples

» [Cavalo, Harper 2018] presents a type theory both Parametric
and Higher-dimensional. Relativity is formulated as:

(A~y B)~(A— B —U)

» [Altenkirch, Kaposi 2017] presents ideas toward a higher
dimensional type theory without interval, inspired by
parametricity.

» [Tabareau, Tanter, Sozeau 2017] implements ideas from
parametricity in order to mechanize the transfer of some
libraries along equivalences in Coq.
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Examples with extensionality

» In Observational Type Theory [Altenkirch, McBride, Swierstra
2007] identity types are defined by induction on a a closed
universe.

» XTT [Angiuli, Gratzer, Sterling 2019] uses cubical techniques,
but two paths with the same endpoints are definitionally equal.
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A core type theory

We start with all the rules for a type theory with:
> ¥ and I1 with n-rules.

> A hierarchy of universes, all denoted U/.
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Heterogeneous path types

We denote _ =);j o — by _ =4 _ when j does not occur in A.
Definition
We add heterogeneous path types:

NlNe: X=y Y
Nl =_: X—>Y—->U

MikFt:A
CF it t[i/0] =xia t]i/1]

FilFp:s=t
I Fp(i):e(i)

For p : ag =¢ a1, we define (p(i))[i/u] as a,[i/u] where u € {0,1}.
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Equivalences

Definition
An equivalence € : A ~ B consists of a relation R: A — B —> U
with contractible fibers. In particular we have:

S Einctionst et AR SR (x : A) = R(x, €(x)).
- [Furettons F o B — A md . (y:B) = R(€(y),y).
We add:
X=uY) = (X=Y)

We identify _ =, _ with the underlying relation of ¢ : A =y, B.
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Computing with path types: some examples

For product types we add:

(a, b) =)\i.AxB (a’, bl) = (a =\ ) (b =\i.B bl)
NAxB(a,b) = <_Z\ m b))
N.A X g(a, by = (Zj\ )
(M.c).l = Mi(cl)
(p,a)(i) = (p(i),q(i))

16



For function types we add:

f=\iasB & (x0 : A[i/0]) = (x1 : A[i/1])

— X0 =xi.a X1 — f(x0) =xi g(x1)
m(f) m ofo m
(Ai.f) (a0, a1, ax) Ai.f(ax(r))
(Aao, a1, a.. t)(i) = 7



Computing with path types: regularity

When i does not occur in A, we add:

NA = A(x : A). x
ﬁ = Ax:A).refl,

Warning

This is not known to be consistent with univalence.
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Toward full computation

How to add type formers

For any type former T, we need to give computation rules for:

» Components of the equivalence Ai.T(A, B), for example:
t1=xi.taB) 2 = C(t1,t2, Ai.A, \i.B)
» elim=(\i.t) with elim— eliminator of C.

» cons_(t)(/) with cons— constructor of C.

We have all rules for X and [1, except for:
(Aag, a1, ax. t) (/)

These rules respect regularity.
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A guess for normal forms

We write Equiv(e) for the second projection of € : A= B.
We write (_,---,_) for the constructor of equivalences.
Definition
We define the set neutral terms N and values V' by induction:
N = x|N@GU)|N1|N2|NV)|
—=xin — | Equiv(AiN) [ (V- V)(i)

Vo= NALV (VW) AV
Y(x:V).V|Nx: V)V U
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Toward interpretation

How to justify this theory?

Iterated parametricity

We hope for a translation similar to parametricity, but with:

U(A,B) = A~B

Then this translation should be iterated once per dimension name.
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Further work

v

We need to solve the problem with [ll-types.

v

We need to give an interpretation. Is regularity consistent?

v

What about confluence, normalization, canonicity?

v

What about inductive types? And higher inductive types?
» Can we internalize parametricity similarly?

» Can we internalize other principles this way?
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