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Overview

Goal

Import differential geometry tools to synthetic algebraic geometry.

Draft

https://felix-cherubini.de/diffgeo.pdf

Today

Focus on smoothness for affine schemes.
Give examples of synthetic proofs.

Smooth Not smooth Not smooth
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What is synthetic algebraic geometry?

It consists of HoTT plus 3 axioms:

Axiom 1

There is a local ring R.

R is a set.
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Affine schemes

For A a finitely presented algebra, we define:

Spec(A) = HomAlg (A,R)

Example

If:
A = R[X ]/P

then:
Spec(A) = {x : R | P(x) = 0}

Definition

A type X is an affine scheme if there is an f.p. algebra A such that:

X = Spec(A)
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Axiom 2: Duality

For any f.p. algebra A the map:

A → RSpec(A)

is an equivalence.

Then:

▶ Spec : {f .p. algebras} ≃ {Affine schemes}
▶ All maps between affine schemes are polynomials.
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Axiom 3: Zariski local choice

Affine schemes enjoys a weakening of the axiom of choice.
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Closed propositions

Definition

A proposition P is closed if there exist r1, . . . , rn : R such that:

P ↔ (r1 = 0 ∧ . . . ∧ rn = 0)

Lemma

Let P be a closed proposition, TFAE:

(1) There exist r1, . . . , rn : R nilpotent such that:

P ↔ (r1 = 0 ∧ . . . ∧ rn = 0)

(2) ¬¬P.

Such a proposition is called closed dense.
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Smoothness

Definition

A type X is smooth if for all closed dense proposition P the map:

X → XP

is surjective.

This means that for all f : P → X we can fill:

P
f //

��

X

1
∃

??

What does this has to do with smoothness?
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Examples

Example 1

The affine scheme:

R = Spec(R[X ])

is smooth.

We have to merely find a lift in:

r1 = 0 ∧ . . . ∧ rn = 0 //

��

R

1
?

77

By duality it is enough to merely find a lift in:

R/(r1, . . . , rn) R[X ]oo

xx
R

OO
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Example 2

The affine scheme:

Spec(R[X ,Y ]/(XY )) = {x , y : R | xy = 0}

is not smooth.

If it was smooth, for all ϵ : R such that ϵ3 = 0 the lift in:

R/(ϵ2) R[X ,Y ]/(XY )
X 7→ϵ,Y 7→ϵ

oo

ttR

OO

gives r , r ′ : (ϵ2) such that (ϵ+ r)(ϵ+ r ′) = 0, so that ϵ2 = 0.
Then:

{x : R | x2 = 0} = {x : R | x3 = 0}
which by duality implies:

R[X ]/(X 2) = R[X ]/(X 3)

14



Example 2

The affine scheme:

Spec(R[X ,Y ]/(XY )) = {x , y : R | xy = 0}

is not smooth.

If it was smooth, for all ϵ : R such that ϵ3 = 0 the lift in:

R/(ϵ2) R[X ,Y ]/(XY )
X 7→ϵ,Y 7→ϵ

oo

ttR

OO

gives r , r ′ : (ϵ2) such that (ϵ+ r)(ϵ+ r ′) = 0, so that ϵ2 = 0.

Then:
{x : R | x2 = 0} = {x : R | x3 = 0}

which by duality implies:

R[X ]/(X 2) = R[X ]/(X 3)

14



Example 2

The affine scheme:

Spec(R[X ,Y ]/(XY )) = {x , y : R | xy = 0}

is not smooth.

If it was smooth, for all ϵ : R such that ϵ3 = 0 the lift in:

R/(ϵ2) R[X ,Y ]/(XY )
X 7→ϵ,Y 7→ϵ

oo

ttR

OO

gives r , r ′ : (ϵ2) such that (ϵ+ r)(ϵ+ r ′) = 0, so that ϵ2 = 0.
Then:

{x : R | x2 = 0} = {x : R | x3 = 0}
which by duality implies:

R[X ]/(X 2) = R[X ]/(X 3)

14



Tangent spaces

We write:

D := Spec(R[X ]/X 2) = {x : R | x2 = 0}

Definition

For X a type and p : X , the tangent space of X at p is:

Tp(X ) := {t : D → X | t(0) = p}

We have the tangent bundle:

ev0 : X
D → X

For any map f : X → Y and p : X we have the differential:

dfp : Tp(X ) → Tf (p)(Y )
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Maps with smooth fibers

Proposition

Let f : X → Y be a map between affine schemes with X smooth.
TFAE:

▶ For all p : X the differential dfp is surjective.

▶ The fibers of f are smooth.
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Tangent spaces of smooth affine schemes

A module M is:

▶ Finite free if there is k : N such that M = Rk .

▶ Finitely copresented if it is the kernel of a map Rm → Rn.

Proposition

Let X be a smooth affine scheme with p : X .
Then Tp(X ) is finite free.

General idea:

1. Tangent spaces of affine schemes are finitely copresented.

2. Tangent space of smooth affine schemes are smooth.

3. Smooth finitely copresented modules are finite free.
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Lemma 2

Let X be a smooth affine scheme with p : X .
Then Tp(X ) is smooth.

We have to show that the tangent bundle:

XD → X

has smooth fibers.

▶ XD is an affine scheme as a dependent sum of affine schemes.

▶ XD is smooth as X is smooth and D has choice.

▶ We need to check its differentials are surjective.
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We need to merely find a lift in:

1

��

// XD

��

D //

>>

X

or equivalently in:

D× 1
∐

1×1D× 1

��

// X

D× D

88

But D× D has choice so it is enough that for all (ϵ, δ) : D× D we
merely find a lift in:

ϵ = 0 ∨ δ = 0

��

// X

1

88

But we can do this as X is smooth.
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Lemma

Let M : Rm → Rn be a linear map with smooth kernel. Then:

M = 0 ∨M ̸= 0

By Nakayama it is enough to check ¬¬(M = 0) → M = 0.
Assume ¬¬(M = 0). Take (xi ) a basis of Rm, we have lifts in:

M = 0
xi //

��

Ker(M)

1

yi

99

But:

▶ If M = 0 then (yi ) is equal to (xi ) so it is a basis of Rm.

▶ We have ¬¬(M = 0).

▶ Being a basis is ¬¬-stable.
So (yi ) is a basis of Rm and Ker(M) = Rm so M = 0.
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Lemma 3

Let M : Rm → Rn be a linear map with smooth kernel. Then
Ker(M) is finite free.

By induction on m. Apply the previous lemma.

▶ If M = 0, then Ker(M) = Rm and it is finite free.

▶ If M ̸= 0, then M has an invertible coefficient. By Gaussian
elimination we get a linear map N : Rm−1 → Rn−1 with the
same kernel.
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Conclusion

Today:

▶ Showcased a couple of synthetic proofs.

▶ Gave some nice properties of smoothness for affine schemes.

In the notes:

▶ Justify smoothness through its connections with étaleness.

▶ Prove smoothness for general types is well-behaved.

▶ Give an explicit Zariski local description of smooth schemes.

▶ And much more!
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Appendix: Explicit Zariski local description

Definition

A standard smooth scheme is an affine scheme of the form:

Spec
((

R[X1, . . . ,Xn,Y1, . . . ,Yk ]/(P1, . . . ,Pn)
)
G

)
where Jac(P1, . . . ,Pn) | G .

Theorem

Let X be a scheme, TFAE:

▶ X is smooth.

▶ X has a finite open cover by standard smooth schemes.
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Appendix: Smoothness is well behaved

Lemma

Open propositions are smooth.

Lemma

Smooth types are closed by Σ.

Lemma

If D has choice and X is smooth, then XD is smooth.

Lemma

The image of a smooth type by any map is smooth.

Lemma

A type X is smooth if and only is ||X ||0 is smooth.
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