Hugo Moeneclaey Université de Paris, Inria Paris, CNRS, IRIF, France

> TYPES 2022 20 June

Outline

Introduction

A first example: parametric categories

A general theory

More examples: lex categories and clans

A model of type theory is parametric if:

- ▶ Any type comes with a relation.
- ▶ Any term respects these.

A model of type theory is parametric if:

- ▶ Any type comes with a relation.
- ► Any term respects these.

Observation

Cubical structures arise when working with parametricity.

A model of type theory is parametric if:

- ▶ Any type comes with a relation.
- ► Any term respects these.

Observation

Cubical structures arise when working with parametricity.

- ► A presheaf model of parametric type theory. [Bernardy, Coquand, Moulin 2015]
- Cubical categories for higher-dimensional parametricity.
 [Johann, Sojakova 2017]
- ► Internal parametricity for cubical type theory. [Cavallo, Harper 2020]

For many:

- ▶ Notions of model of type theory.
- ▶ Variants of cubes.

For many:

- Notions of model of type theory.
- Variants of cubes.

There is a notion of parametricity such that:

Outline

Introduction

A first example: parametric categories

A general theory

More examples: lex categories and clans

Parametric categories

Parametric categories

Definition

A category C is parametric if we are given:

 \triangleright An endofunctor of \mathcal{C} :

$$X \mapsto X_*$$

► Natural transformations:

$$d_X^0,d_X^1 \ : \ X_* \to X$$

6

Parametric categories

Definition

A category C is parametric if we are given:

ightharpoonup An endofunctor of C:

$$X\mapsto X_*$$

Natural transformations:

$$d_X^0, d_X^1 : X_* \to X$$

Any object X comes with a relation:

$$d_X^0, d_X^1 : X_* \to X$$

Any morphism respects these.

6

Categories of semi-cubical objects

Categories of semi-cubical objects

Definition Let \square be the (opposite of the) category of semi-cubes, so that: $\mathcal{C}^\square = \{Semi-cubical\ objects\ in\ \mathcal{C}\}$

Categories of semi-cubical objects

Definition

Let \square be the (opposite of the) category of semi-cubes, so that:

$$\mathcal{C}^{\square} = \{ Semi-cubical \ objects \ in \ \mathcal{C} \}$$

Outline

Introduction

A first example: parametric categories

A general theory

More examples: lex categories and clans

Let $\ensuremath{\mathcal{U}}$ be a symmetric monoidal closed category of models of type theory.

Let $\ensuremath{\mathcal{U}}$ be a symmetric monoidal closed category of models of type theory.

Definition

A notion of parametricity is a monoid in \mathcal{U} .

Let $\ensuremath{\mathcal{U}}$ be a symmetric monoidal closed category of models of type theory.

Definition

A notion of parametricity is a monoid in \mathcal{U} .

Example

The category \square is the monoidal category generated by:

$$d^0, d^1$$
 : $\mathbb{I} \to 1$

9

Let $\mathcal M$ be a notion of parametricity.

Let $\mathcal M$ be a notion of parametricity.

Definition

A parametric model is an \mathcal{M} -module.

Let \mathcal{M} be a notion of parametricity.

Definition

A parametric model is an \mathcal{M} -module.

Example

A \square -module is a category \mathcal{C} with a monoidal functor:

$$\alpha$$
: $\square \to End_{\mathcal{C}}$

or equivalently:

$$_{-*}$$
 : $End_{\mathcal{C}}$ d^{0}, d^{1} : $Hom_{End_{\mathcal{C}}}(_{-*}, 1)$

Cofreely parametric models

Cofreely parametric models

Cofreely parametric models

Theorem

Example

```
\mathcal{U} = \{ \textit{Categories} \}
\mathcal{M} = \square
\{ \mathcal{M}\text{-modules} \} = \{ \textit{Parametric categories} \}
```

Outline

Introduction

A first example: parametric categories

A general theory

More examples: lex categories and clans

Notions of parametricity for categories

Notions of parametricity for categories

Example

Categories of cubical objects are cofreely parametric, by adding to \square a morphism:

$$r: 1 \rightarrow \mathbb{I}$$

such that:

$$d^0 \circ r = d^1 \circ r = id$$

Theorem

Lex categories (or clans) form a symmetric monoidal closed category.

Theorem

Lex categories (or clans) form a symmetric monoidal closed category.

Example

Lex categories of truncated semi-cubical (or cubical) objects are cofreely parametric.

Theorem

Lex categories (or clans) form a symmetric monoidal closed category.

Example

Lex categories of truncated semi-cubical (or cubical) objects are cofreely parametric.

Example

Clans of Reedy fibrant semi-cubical (or cubical) objects are cofreely parametric.

Further work

- ► To work with a 1-category of models, we use strict versions of lex categories and clans.
- ► Models with Π-types or universes do not fit.
- ▶ Univalence and Kan cubes do not fit.

Thank you!

I'm looking for a post-doc!

moeneclaey@irif.fr