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Abstract
The language of homotopy type theory has proved to be an appropriate internal language for various
higher toposes, for example for the Zariski topos in Synthetic Algebraic Geometry. This paper aims
to do the same for the higher topos of light condensed anima of Dustin Clausen and Peter Scholze.
This seems to be an appropriate setting for synthetic topology in the style of Martín Escardó.

We use homotopy type theory extended with 4 axioms. We prove Markov’s principle, LLPO and
the negation of WLPO. Then we define a type of open propositions, inducing a topology on any
type such that any map is continuous. We give a synthetic definition of second countable Stone and
compact Hausdorff spaces, and show that their induced topologies are as expected. This means that
any map from e.g. the unit interval I to itself is continuous in the usual epsilon-delta sense.

With the usual definition of cohomology in homotopy type theory, we show that H1(S,Z) = 0
for S Stone and that H1(X,Z) for X compact Hausdorff can be computed using Čech cohomology.
We use this to prove H1(I1,Z) = 0 and H1(S1,Z) = Z where S1 is the set R/Z. As an application,
we give a synthetic proof of Brouwer’s fixed-point theorem.
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Introduction

The language of homotopy type theory consists of dependent type theory enriched with the
univalence axiom and higher inductive types. It has proven exceptionnally well-suited to a
synthetic development of homotopy theory [13]. It also provides a framework precise enough
to analyze categorical models of type theory [20]. Moreover, arguments in this language
can be represented in proof assistants rather directly. In this article we use homotopy type
theory to give a synthetic development of topology, analogous to the synthetic development
of algebraic geometry in [4].
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We introduce four axioms inspired by the light condensed sets introduced in [5]. Interest-
ingly, our axioms have strong connections with constructive mathematics [3], in particular
constructive reverse mathematics [11, 7]. Indeed they imply several of Brouwer’s principles
(e.g. any real function on the unit interval is continuous, the celebrated fan theorem), as well
as not intuitionistically valid principles (Markov’s Principle, the so-called Lesser Limited
Principle of Omniscience).

Our axioms also closely align with the program of Synthetic Topology [9, 12, 19, 10, 21].
Indeed we have a dominance of open propositions, so that any type comes with an induced
topology. Using this induced topology, we manage to capture synthetically the notion of
second-countable compact Hausdorff spaces. While working on our axioms, we learnt about
[2], which provides a similar axiomatisation in extensional type theory. We show that some
of their axioms are consequences of ours. For example1, we can define in our setting the
notion of overtly discrete types, which is dual to the notion of compact Hausdorff spaces.

A central theme of homotopy type theory is that the notion of type is more general than
the notion of set. We illustrate this theme in this work. Indeed we can form the types of
Stone spaces and of compact Hausdorff spaces, which are not sets but rather a groupoids.
Moreover these spaces are closed under Σ-type types, which would be impossible to formulate
in the traditional setting. Additionally, we can leverage higher types by using the elegant
definition of cohomology groups in homotopy type theory [13]. We then prove a special case
of a theorem of Dyckhoff [8] describing the cohomology of compact Hausdorff spaces. As an
application, we give a synthetic proof of Brouwer’s fixed point theorem, similar to the proof
of an approximated form in [16].

We expect our axioms to be validated by the interpretation of homotopy type theory into
the higher topos of light condensed anima [17], although checking this rigorously is still work
in progress. We even expect this to be valid in a constructive metatheory, using [6]. It is
important to stress that our axioms only capture the properties of light condensed anima
that are internally valid. Since David Wärn [23] has proved that an important property of
condensed abelian groups is not valid internally, this means that we cannot prove it in our
setting. We also conjecture that the present axiom system is complete for the properties that
are internally valid.

1 Stone duality

1.1 Preliminaries
▶ Remark 1.1. For X any type, a subtype U of X is a family of propositions over X. We
write U ⊆ X. If X is a set, we call U a subset. Given x : X we sometimes write x ∈ U

instead of U(x). For subtypes A, B ⊆ X, we write A ⊆ B for pointwise implication. We will
freely switch between a subtype U ⊆ X and the corresponding embedding

∑
x:X U(x) ↪→ X.

In particular, if we write x : U we mean x : X such that U(x).

▶ Definition 1.2. A type is countable if and only if it is merely equal to some decidable
subset of N.

▶ Definition 1.3. For I a set we write 2[I] for the free Boolean algebra on I. A Boolean
algebra B is countably presented if there exist countable sets I, J with generators g : I → B

and relations f : J → 2[I] such that g induces an equivalence between 2[I]/(fj)j:J and B.

1 We can actually prove all of their axioms, from which their directed univalence follows. This will be
presented in a following paper.
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▶ Remark 1.4. Any countably presented algebra is merely of the form 2[N]/(rn)n:N.

▶ Remark 1.5. We denote the type of countably presented Boolean algebras by Booleω. This
type does not depend on a choice of universe. Moreover Booleω has a natural category
structure.

▶ Example 1.6. If both the set of generators and relations are empty, we get the Boolean
algebra 2. Its underlying set is {0, 1} with 0 ̸= 1. We have that 2 is initial in Booleω.

▶ Definition 1.7. For B a countably presented Boolean algebra, we define the spectrum
Sp(B) as the set Hom(B, 2) of Boolean morphisms from B to 2. Any type which is merely
equivalent to some spectrum is called a Stone space.

▶ Example 1.8.
(i) There is only one Boolean morphism from 2 to 2, thus Sp(2) is the singleton type ⊤.
(ii) The trivial Boolean algebra is presented as 2/(1). We have 0 = 1 in the trivial Boolean

algebra, so there cannot be a map from it into 2 preserving both 0 and 1. Therefore
the corresponding Stone space is the empty type ⊥.

(iii) The type Sp(2[N]) is called the Cantor space. It is equivalent to the set of binary
sequences 2N. Given α : Sp(2[N]) and n : N, we write αn for α(gn), the n-th bit of the
corresponding binary sequence.

(iv) We denote by B∞ the Boolean algebra generated by (gn)n:N quotiented by the relations
gm ∧ gn = 0 for n ̸= m. A morphism B∞ → 2 corresponds to a function N → 2 that
hits 1 at most once. We denote Sp(B∞) by N∞. For α : N∞ and n : N we write αn for
α(gn). For n : N, we define n : N∞ as the unique α : N∞ such that αn = 1. We define
∞ : N∞ as the unique α : N∞ such that αn = 0 for all n : N.
By conjunctive normal form, any element of B∞ can be written uniquely as

∨
i:I gn or

as
∧

i:I ¬gn for some finite I ⊆ N.

▶ Lemma 1.9. Given α : 2N, we have an equivalence of propositions:

(∀n:N αn = 0) ↔ Sp(2/(αn)n:N).

Proof. There is only one Boolean morphism x : 2 → 2, and it satisfies x(αn) = 0 for all n : N
if and only if αn = 0 for all n : N. ◀

1.2 Axioms

▶ Axiom 1 (Stone duality). For all B : Booleω, the evaluation map B → 2Sp(B) is an
isomorphism.

▶ Axiom 2 (Surjections are formal surjections). For all morphism g : B → C in Booleω, we
have that g is injective if and only if (−) ◦ g : Sp(C) → Sp(B) is surjective.

▶ Axiom 3 (Local choice). For all B : Booleω and type family P over Sp(B) such that
Πs:Sp(B)∥P (s)∥, there merely exists some C : Booleω and surjection q : Sp(C) → Sp(B) such
that Πt:Sp(C)P (q(t)).

▶ Axiom 4 (Dependent choice). For all types (En)n:N with surjections En+1 ↠ En for all
n : N, the projection from the sequential limit limk Ek to E0 is surjective.

TYPES 2024



3:4 A Foundation for Synthetic Stone Duality

1.3 Anti-equivalence of Booleω and Stone
By Axiom 1, the map Sp is an embedding of Booleω into any universe of types. We denote
its image by Stone.
▶ Remark 1.10. Stone spaces will take over the role of the affine schemes from [4], so let us
repeat some results here. Analogously to Lemma 3.1.2 of [4], for X : Stone, Axiom 1 tells us
that X = Sp(2X). Proposition 2.2.1 of [4] now says that Sp gives a natural equivalence

Hom(A, B) = (Sp(B) → Sp(A))

By the above and Lemma 9.4.5 of [13], the map Sp defines a dual equivalence of categories
between Booleω and Stone. In particular the spectrum of any colimit in Booleω is the limit
of the spectrum of the opposite diagram.
▶ Remark 1.11. Axiom 3 can also be formulated as follows: Given S : Stone with E, F

arbitrary types, a map f : S → F and a surjection e : E ↠ F , there exists a Stone space T ,
a surjective map T ↠ S and an arrow T → E making the following diagram commute:

T E

S F

e

f

▶ Lemma 1.12. For B : Booleω, we have 0 =B 1 if and only if ¬ Sp(B).

Proof. If 0 =B 1, there is no map in B → 2 preserving both 0 and 1, thus ¬ Sp(B).
Conversely, if ¬ Sp(B) then Sp(B) = ⊥. Since ⊥ is the spectrum of the trivial Boolean
algebra and Sp is an embedding, we conclude that B is the trivial Boolean algebra, hence
0 =B 1. ◀

▶ Corollary 1.13. For S : Stone, we have that ¬¬S → ∥S∥

Proof. Let B : Booleω and suppose ¬¬ Sp(B). By Lemma 1.12 we have that 0 ̸=B 1,
therefore the morphism 2 → B is injective. By Axiom 2 the map Sp(B) → Sp(2) is surjective,
thus Sp(B) is merely inhabited. ◀

1.4 Principles of omniscience
The so-called principles of omniscience are all weaker than the law of excluded middle (LEM),
and help measure how close a logical system is to satisfying LEM [7, 11]. In this section, we
will show that two such principles hold (MP and LLPO), and that another one fails (WLPO).

▶ Theorem 1.14 (The negation of the weak lesser principle of omniscience (¬WLPO)).

¬∀α:2N((∀n:N αn = 0) ∨ ¬(∀n:N αn = 0))

Proof. We will prove that any decidable property of binary sequences is determined by a
finite prefix of fixed length, contradicting ∀n:N αn = 0 being decidable for all α. Indeed
assume f : 2N → 2 such that f(α) = 0 if and only if ∀n:N αn = 0. By Axiom 1, there is some
c : 2[N] with f(α) = 0 if and only if α(c) = 0. There exists k : N such that c is expressed
in terms of the generators (gn)n≤k. Now consider β, γ : 2N given by β(gn) = 0 for all n : N
and γ(gn) = 0 if and only if n ≤ k. As β and γ are equal on (gn)n≤k, we have β(c) = γ(c).
However, f(β) = 0 and f(γ) = 1, giving a contradiction. ◀
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▶ Theorem 1.15. For all α : N∞, we have that

(¬(∀n:N αn = 0)) → Σn:N αn = 1

Proof. By Lemma 1.9, we have that ¬(∀n:N αn = 0) implies that Sp(2/(αn)n:N) is empty.
Hence 2/(αn)n:N is trivial by Lemma 1.12. Then there exists k : N such that

∨
i≤k αi = 1.

As αi = 1 for at most one i : N, there exists a unique n : N with αn = 1. ◀

▶ Corollary 1.16 (Markov’s principle (MP)). For all α : 2N, we have that

(¬(∀n:N αn = 0)) → Σn:N αn = 1

Proof. Given α : 2N, consider the sequence α′ : N∞ satisfying α′
n = 1 if and only if n is

minimal with αn = 1. Then apply the above theorem. ◀

▶ Theorem 1.17 (The lesser limited principle of omniscience (LLPO)). For all α : N∞, we
have that

(∀k:N α2k = 0) ∨ (∀k:N α2k+1 = 0)

Proof. Define f : B∞ → B∞ × B∞ on generators as follows

f(gn) =
{

(gk, 0) if n = 2k

(0, gk) if n = 2k + 1

Note that f is a well-defined morphism in Booleω as f(gn) ∧ f(gm) = 0 whenever m ≠ n. We
claim that f is injective. If I ⊆ N, write I0 = {k | 2k ∈ I}, I1 = {k | 2k + 1 ∈ I}. Recall
that any x : B∞ is of the form

∨
i∈I gi or

∧
i∈I ¬gi for some finite set I.

If x =
∨

i∈I gi, then f(x) = (
∨

i∈I0
gi,

∨
i∈I1

gi). So if f(x) = 0, then I0 = I1 = I = ∅ and
x = 0.
Suppose x =

∧
i∈I ¬gi. Then f(x) = (

∧
i∈I0

¬gi,
∧

i∈I1
¬gi), so f(x) ̸= 0.

By Axiom 2, we have that f corresponds to a surjection s : N∞ + N∞ → N∞. Thus for
α : N∞, there exists some x : N∞ + N∞ such that s(x) = α. If x = inl(β), then for any k : N
we have that

α2k+1 = s(x)2k+1 = x(f(g2k+1)) = inl(β)(0, gk) = β(0) = 0.

Similarly, if x = inr(β), we have that α2k = 0 for all k : N. ◀

The surjection s : N∞ + N∞ → N∞ above does not have a section. Indeed:

▶ Lemma 1.18. The function f defined above does not have a retraction.

Proof. Suppose r : B∞ × B∞ → B∞ is a retraction of f . Then r(0, gk) = g2k+1 and
r(gk, 0) = g2k. Note that r(0, 1) ≥ r(0, gk) = g2k+1 for all k : N. As a consequence, r(0, 1) is
of the form

∧
i∈I ¬gi for some finite set I. By similar reasoning so is r(1, 0). But then

r(0, 1) ∧ r(1, 0) = r((1, 0) ∧ (0, 1)) = r(0, 0) = 0.

This is a contradiction. ◀

TYPES 2024



3:6 A Foundation for Synthetic Stone Duality

1.5 Open and closed propositions
Open (resp. closed) propositions are defined as countable disjunctions (resp. conjunctions)
of decidable propositions. In this section we will study their logical properties.

▶ Definition 1.19. A proposition P is open (resp. closed) if there exists some α : 2N such
that P ↔ ∃n:Nαn = 0 (resp. P ↔ ∀n:Nαn = 0). We denote by Open and Closed the types of
open and closed propositions.

▶ Remark 1.20. The negation of an open proposition is closed, and by MP (Corollary 1.16),
the negation of a closed proposition is open. Moreover both open and closed propositions are
¬¬-stable. By ¬WLPO (Theorem 1.14), not every closed proposition is decidable. Therefore,
not every open proposition is decidable. Every decidable proposition is both open and closed.

▶ Lemma 1.21. We have the following:
Closed propositions are stable under countable conjunctions and finite disjunctions.
Open propositions are stable under countable disjunctions and finite conjunctions.

Proof. All statements but the one about finite disjunctions have similar proofs, so we only
present the proof that closed propositions are stable under countable conjunctions. Let
(Pn)n:N be a countable family of closed propositions. By countable choice, for each n : N we
have an αn : 2N such that Pn ↔ ∀m:N αn,m = 0. Consider a surjection s : N ↠ N × N, and
let βk = αs(k). Note that ∀k:N βk = 0 if and only if ∀n:NPn.

To prove that closed propositions are closed under finite disjunctions, we use the known
fact that LLPO (Theorem 1.17) is equivalent to the statement that for P and Q open, we
have that (¬P ∨ ¬Q) ↔ ¬(P ∧ Q). We conclude using that closed propositions are negations
of open propositions, and that the conjunction of two open propositions is open. ◀

From now on we will use the above properties silently.

▶ Corollary 1.22. If a proposition is both open and closed, then it is decidable.

Proof. If P is open and closed, then P ∨ ¬P is open. So it is ¬¬-stable and we conclude
from ¬¬(P ∨ ¬P ). ◀

▶ Lemma 1.23. For (Pn)n:N a sequence of closed propositions, we have ¬∀n:NPn ↔ ∃n:N¬Pn.

Proof. Both ¬∀n:NPn and ∃n:N¬Pn are open, hence ¬¬-stable. The equivalence follows. ◀

▶ Lemma 1.24. If P is open and Q is closed then P → Q is closed. If P is closed and Q

open, then P → Q is open.

Proof. Note that ¬P ∨Q is closed. Using ¬¬-stability we conclude that (P → Q) ↔ (¬P ∨Q).
The other proof is similar. ◀

1.6 Types as spaces
The subset Open of the set of propositions induces a topology on every type. This is the
viewpoint taken in synthetic topology, from which we borrow terminology [9, 12].

▶ Definition 1.25. Let T be a type, and let A ⊆ T be a subtype. We call A ⊆ T open (resp.
closed) if A(t) is open (resp. closed) for all t : T .

▶ Remark 1.26. It follows immediately that the pre-image of an open by any map is open,
so that any map is continuous. In Theorem 3.11, we will see that the resulting topology is
as expected for Stone spaces. In Lemma 4.27, we will see that the same holds for the unit
interval.
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2 Overtly discrete spaces

▶ Definition 2.1. We call a type overtly discrete if it is a sequential colimit of finite sets.

▶ Remark 2.2. It follows from Corollary 7.7 of [18] that overtly discrete types are sets, and
that the sequential colimit can be defined as in set theory. We write ODisc for the type of
overtly discrete types.
Using dependent choice, we have the following results:

▶ Lemma 2.3. A map between overtly discrete sets is a sequential colimit of maps between
finite sets.

▶ Lemma 2.4. For f : A → B a sequential colimit of maps of finite sets fn : An → Bn, we
have that the factorisation A ↠ Im(f) ↪→ B is the sequential colimit of the factorisations
An ↠ Im(fn) ↪→ Bn.

▶ Corollary 2.5. An injective (resp. surjective) map between overtly discrete types is a
sequential colimit of injective (resp. surjective) maps between finite sets.

2.1 Closure properties of ODisc
We can get the following result using Lemma 2.3 and dependent choice.

▶ Lemma 2.6. Overtly discrete types are stable under sequential colimits.

We have that Σ-types, identity types and propositional truncation commute with sequen-
tial colimits (Theorem 5.1, Theorem 7.4 and Corollary 7.7 in [18]). Then by closure of finite
sets under these constructors, we can get the following:

▶ Lemma 2.7. Overtly discrete types are stable under Σ-types, identity types and propositional
truncations.

2.2 Open and ODisc
▶ Lemma 2.8. A proposition is open if and only if it is overtly discrete.

Proof. If P is overtly discrete, then P ↔ ∃n:N∥Fn∥ with Fn finite sets. But a finite set being
inhabited is decidable, hence P is a countable disjunction of decidable propositions, so it is
open. Suppose P ↔ ∃n:Nαn = 1. Let Pn = ∃n≤k(αn = 1), which is a decidable proposition,
hence a finite set. Then the colimit of Pn is P . ◀

▶ Corollary 2.9. Open propositions are stable under Σ-types.

▶ Corollary 2.10 (transitivity of openness). Let T be a type, let V ⊆ T open and let W ⊆ V

open. Then W ⊆ T is open as well.

▶ Remark 2.11. It follows from Proposition 2.25 of [12] that Open is a dominance in the
setting of Synthetic Topology.

▶ Lemma 2.12. A type B is overtly discrete if and only if it is the quotient of a countable
set by an open equivalence relation.

Proof. If B : ODisc is the sequential colimit of finite sets Bn, then B is an open quotient
of (Σn:NBn). Conversely, assume B = D/R with D ⊆ N decidable and R open. By
dependent choice we get α : D → D → 2N such that R(x, y) ↔ ∃k:Nαx,y(k) = 1. Define
Dn = (D ∩N≤n), and define Rn : Dn → Dn → 2 as the equivalence relation generated by the
relation ∃k≤n αx,y(k) = 1. Then the Bn = Dn/Rn are finite sets, and their colimit is B. ◀

TYPES 2024



3:8 A Foundation for Synthetic Stone Duality

2.3 Relating ODisc and Booleω

▶ Lemma 2.13. Every countably presented Boolean algebra is a sequential colimit of finite
Boolean algebras.

Proof. Consider a countably presented Boolean algebra of the form B = 2[N]/(rn)n:N. For
each n : N, let Gn be the union of {gi | i ≤ n} and the finite set of generators occurring in ri

for some i ≤ n. Denote Bn = 2[Gn]/(ri)i≤n. Each Bn is a finite Boolean algebra, and there
are canonical maps Bn → Bn+1. Then B is the colimit of this sequence. ◀

▶ Corollary 2.14. A Boolean algebra B is overtly discrete if and only if it is countably
presented.

Proof. Assume B : ODisc. By Lemma 2.12, we get a surjection N ↠ B and that B has open
equality. Consider the induced surjective morphism f : 2[N] ↠ B. By countable choice, we
get for each b : 2[N] a sequence αb : 2N such that (f(b) = 0) ↔ ∃k:N(αb,k = 1). Consider
r : 2[N] → N → 2[N] given by

r(b, k) =
{

b if αb(k) = 1
0 if αb(k) = 0

Then B = 2[N]/(r(b, k))b:2[N],k:N. The converse comes from Lemma 2.13. ◀

▶ Remark 2.15. By Lemma 2.7 and Corollary 2.14, it follows that any g : B → C in Booleω

has an overtly discrete kernel. As a consequence, the kernel is enumerable and B/Ker(g)
is in Booleω. By uniqueness of epi-mono factorizations and Axiom 2, the factorization
B ↠ B/Ker(g) ↪→ C corresponds to Sp(C) ↠ Sp(B/Ker(g)) ↪→ Sp(B).
▶ Remark 2.16. Similarly to Lemma 2.3 and Lemma 2.4, a (resp. surjective, injective)
morphism in Booleω is a sequential colimit of (resp. surjective, injective) morphisms between
finite Boolean algebras.

3 Stone spaces

3.1 Stone spaces as profinite sets
Here we present Stone spaces as sequential limits of finite sets. This is the perspective taken
in Condensed Mathematics [15, 1, 5]. Some of the results in this section are versions of the
axioms used in [2]. A full proof of all these axioms is part of future work.

▶ Lemma 3.1. Any S : Stone is a sequential limit of finite sets.

Proof. Assume B : Booleω. By Remark 1.10 and Lemma 2.13, we have that Sp(B) is a
sequential limit of spectra of finite Boolean algebras, which are finite sets. ◀

▶ Lemma 3.2. A sequential limit of finite sets is a Stone space.

Proof. By Remark 1.10 and Lemma 2.6, we have that Stone is closed under sequential limits,
and finite sets are Stone. ◀

▶ Corollary 3.3. Stone spaces are stable under finite limits.

▶ Remark 3.4. By Remark 2.16 and Axiom 2, maps (resp. surjections, injections) of Stone
spaces are sequential limits of maps (resp. surjections, injections) of finite sets.
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▶ Lemma 3.5. For (Sn)n:N a sequence of finite types with S = limn Sn and k : N, we have
that Fin(k)S is the sequential colimit of Fin(k)Sn .

Proof. By Remark 1.10 we have Fin(k)S = Hom(2k, 2S). Since 2k is finite, we have that
Hom(2k, _) commutes with sequential colimits, therefore Hom(2k, 2S) is the sequential
colimit of Hom(2k, 2Sn). By applying Remark 1.10 again, the latter type is Fin(k)Sn . ◀

▶ Lemma 3.6. For S : Stone and f : S → N, there exists some k : N such that f factors
through Fin(k).

Proof. For each n : N, the fiber of f over n is a decidable subset fn : S → 2. We must have
that Sp(2S/(fn)n:N) = ⊥, hence there exists some k : N with

∨
n≤k fn =2S 1. It follows that

f(s) ≤ k for all s : S as required. ◀

▶ Corollary 3.7. For (Sn)n:N a sequence of finite types with S = limn Sn, we have that NS

is the sequential colimit of NSn .

Proof. By Lemma 3.6 we have that NS is the sequential colimit of Fin(k)S . By Lemma 3.5,
Fin(k)S is the sequential colimit of the Fin(k)Sn and we can swap the sequential colimits to
conclude. ◀

3.2 Closed and Stone
▶ Corollary 3.8. For all S : Stone, the proposition ∥S∥ is closed.

Proof. By Lemma 1.12, ¬S is equivalent to 0 =2S 1, which is open by Lemma 2.13 and
Lemma 2.12. Hence ¬¬S is a closed proposition, and by Corollary 1.13, so is ∥S∥. ◀

▶ Corollary 3.9. A proposition P is closed if and only if it is a Stone space.

Proof. By the above, if S is both a Stone space and a proposition, it is closed. By Lemma 1.9,
any closed proposition is Stone. ◀

▶ Lemma 3.10. For all S : Stone and s, t : S, the proposition s = t is closed.

Proof. Suppose S = Sp(B) and let G be a countable set of generators for B. Then s = t

if and only if s(g) = t(g) for all g : G. So s = t is a countable conjunction of decidable
propositions, hence closed. ◀

3.3 The topology on Stone spaces
▶ Theorem 3.11. Let A ⊆ S be a subset of a Stone space. The following are equivalent:

(i) There exists a map α : S → 2N such that A(x) ↔ ∀n:N αx,n = 0 for any x : S.
(ii) There exists a family (Dn)n:N of decidable subsets of S such that A =

⋂
n:N Dn.

(iii) There exists a Stone space T and some embedding T → S whose image is A.
(iv) There exists a Stone space T and some map T → S whose image is A.
(v) A is closed.

Proof.
(i) ↔ (ii). Dn and α can be defined from each other by Dn(x) ↔ (αx,n = 0). Then
observe that

x ∈
⋂
n:N

Dn ↔ ∀n:N(αx,n = 0).
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3:10 A Foundation for Synthetic Stone Duality

(ii) → (iii). Let S = Sp(B). By Axiom 1, we have (dn)n:N in B such that Dn = {x :
S | x(dn) = 0}. Let C = B/(dn)n:N. Then Sp(C) → S is as desired because:

Sp(C) = {x : S | ∀n:N x(dn) = 0} =
⋂
n:N

Dn.

(iii) → (iv). Immediate.
(iv) → (ii). Assume f : T → S corresponds to g : B → C in Booleω. By Remark 2.15,
f(T ) = Sp(B/Ker(g)) and there exists a surjection d : N → Ker(g). For n : N,
we denote by Dn the decidable subset of S corresponding to dn. Then we have that
Sp(B/Ker(g)) =

⋂
n:N Dn.

(i) → (v). By definition.
(v) → (iv). We have a surjection 2N ↠ Closed defined by α 7→ ∀n:N αn = 0. Remark 1.11
gives us that there merely exists T, e, β· as follows:

T 2N

S Closed

β

e

A

Define B(x) ↔ ∀n:N βx,n = 0. As (i) → (iii) by the above, B is the image of some Stone
space. Note that A is the image of B, thus A is the image of some Stone space.

◀

▶ Corollary 3.12. Closed subtypes of Stone spaces are Stone.

▶ Corollary 3.13. For S : Stone and A ⊆ S closed, we have that ∃x:SA(x) is closed.

Proof. By Corollary 3.12, we have that Σx:SA(x) is Stone, so its truncation is closed by
Corollary 3.8. ◀

▶ Corollary 3.14. Closed propositions are closed under sigma types.

Proof. Let P : Closed and Q : P → Closed. Then Σp:P Q(p) ↔ ∃p:P Q(p). As P is Stone by
Corollary 3.9, Corollary 3.13 gives that Σp:P Q(p) is closed. ◀

▶ Remark 3.15. Analogously to Corollary 2.10 and Remark 2.11, it follows that closedness is
transitive and Closed forms a dominance.

▶ Lemma 3.16. Assume S : Stone with F, G : S → Closed such that F ∩ G = ∅. Then there
exists a decidable subset D : S → 2 such F ⊆ D, G ⊆ ¬D.

Proof. Assume S = Sp(B). By Theorem 3.11, for all n : N there is fn, gn : B such that
x ∈ F if and only if ∀n:N x(fn) = 0 and y ∈ G if and only if ∀n:N y(gn) = 0. Denote by h

the sequence defined by h2k = fk and h2k+1 = gk. Then Sp(B/(hk)k:N) = F ∩ G = ∅, so by
Lemma 1.12 there exists finite sets I, J ⊆ N such that 1 =B ((

∨
i:I fi) ∨ (

∨
j:J gj)). If y ∈ F ,

then y(fi) = 0 for all i : I, hence y(
∨

j:J gj) = 1 If x ∈ G, we have x(
∨

j:J gj) = 0. Thus we
can define the required D by D(x) ↔ x(

∨
j:J gj) = 1. ◀

4 Compact Hausdorff spaces

▶ Definition 4.1. A type X is called a compact Hausdorff space if its identity types are closed
propositions and there exists some S : Stone with a surjection S ↠ X. We write CHaus for
the type of compact Hausdorff spaces.
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4.1 Topology on compact Hausdorff spaces
▶ Lemma 4.2. Let X : CHaus, S : Stone and q : S ↠ X surjective. Then A ⊆ X is closed if
and only if it is the image of a closed subset of S by q.

Proof. As q is surjective, we have q(q−1(A)) = A. If A is closed, so is q−1(A) and hence A

is the image of a closed subset of S. Conversely, let B ⊆ S be closed. Then x ∈ q(B) if and
only if

∃s:S(B(s) ∧ q(s) = x).

Hence by Corollary 3.13, q(B) is closed. ◀

The next two corollaries mean that compact Hausdorff spaces are compact in the sense
of Synthetic Topology.

▶ Corollary 4.3. Assume given X : CHaus with A ⊆ X closed. Then ∃x:XA(x) is closed, and
equivalent to A ̸= ∅.

Proof. From Lemma 4.2 and Theorem 3.11, it follows that A ⊆ X is closed if and only if it
is the image of a map T → X for some T : Stone. Then ∃x:XA(x) if and only ∥T∥, which is
closed by Corollary 3.8. Therefore ∃x:XA(x) is ¬¬-stable and equivalent to A ̸= ∅. ◀

▶ Corollary 4.4. Assume given X : CHaus with U ⊆ X open. Then ∀x:XU(x) is open.

The next lemma means that compact Hausdorff spaces are not too far from being compact
in the classical sense.

▶ Lemma 4.5. Given X : CHaus and Cn : X → Closed closed subsets such that
⋂

n:N Cn = ∅,
there is some k : N with

⋂
n≤k Cn = ∅.

Proof. By Lemma 4.2 it is enough to prove the result when X is Stone, and by Theorem 3.11
we can assume Cn decidable. So assume X = Sp(B) and cn : B such that

Cn = {x : B → 2 | x(cn) = 0}.

Then we have that

Sp(B/(cn)n:N) ≃
⋂
n:N

Cn = ∅.

Hence 0 = 1 in B/(cn)n:N and there is some k : N with
∨

n≤k cn = 1, which means that

∅ = Sp(B/(cn)n≤k) ≃
⋂

n≤k

Cn

as required. ◀

▶ Corollary 4.6. Let X, Y : CHaus and f : X → Y . Suppose (Gn)n:N is a decreasing sequence
of closed subsets of X. Then f(

⋂
n:N Gn) =

⋂
n:N f(Gn).

Proof. It is always the case that f(
⋂

n:N Gn) ⊆
⋂

n:N f(Gn). For the converse direction,
suppose that y ∈ f(Gn) for all n : N. We define F ⊆ X closed by F = f−1(y). Then for all
n : N we have that F ∩ Gn is non-empty. By Lemma 4.5 this implies that

⋂
n:N(F ∩ Gn) ̸= ∅.

By Corollary 4.3, we have that
⋂

n:N(F ∩ Gn) is merely inhabited. Thus y ∈ f(
⋂

n:N Gn) as
required. ◀
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▶ Corollary 4.7. Let A ⊆ X be a subset of a compact Hausdorff space and p : S ↠ X

be a surjective map with S : Stone. Then A is closed (resp. open) if and only if there
exists a sequence (Dn)n:N of decidable subsets of S such that A =

⋂
n:N p(Dn) (resp. A =⋃

n:N ¬p(Dn)).

Proof. The characterization of closed subsets follows from characterization (ii) in The-
orem 3.11, Lemma 4.2 and Corollary 4.6. To deduce the characterization of open subsets we
use Remark 1.20 and Lemma 1.23. ◀

▶ Remark 4.8. For S : Stone, there is a surjection N ↠ 2S . It follows that for any X : CHaus
there is a surjection from N to a basis of X. Classically this means that X is second countable.

The next lemma means that compact Hausdorff spaces are normal.

▶ Lemma 4.9. Assume X : CHaus and A, B ⊆ X closed such that A ∩ B = ∅. Then there
exist U, V ⊆ X open such that A ⊆ U , B ⊆ V and U ∩ V = ∅.

Proof. Let q : S ↠ X be a surjective map with S : Stone. As q−1(A) and q−1(B) are
closed, by Lemma 3.16, there is some D : S → 2 such that q−1(A) ⊆ D and q−1(B) ⊆ ¬D.
Note that q(D) and q(¬D) are closed by Lemma 4.2. As q−1(A) ∩ ¬D = ∅, we have that
A ⊆ ¬q(¬D) := U . Similarly B ⊆ ¬q(D) := V . Then U and V are disjoint because
¬q(D) ∩ ¬q(¬D) = ¬(q(D) ∪ q(¬D)) = ¬X = ∅. ◀

4.2 Compact Hausdorff spaces are stable under sigma types
▶ Lemma 4.10. A type X is Stone if and only if it is merely a closed subset of 2N.

Proof. By Remark 1.4, any B : Booleω can be written as 2[N]/(rn)n:N. By Remark 2.15,
the quotient map induces an embedding Sp(B) ↪→ Sp(2[N]) = 2N, which is closed by
Theorem 3.11. ◀

▶ Lemma 4.11. Compact Hausdorff spaces are stable under Σ-types.

Proof. Assume X : CHaus and Y : X → CHaus. By Corollary 3.14 we have that identity
types in Σx:XY (x) are closed. By Lemma 4.10 we know that for any x : X there merely
exists a closed C ⊆ 2N with a surjection Σα:2NC(α) ↠ Y (x). By local choice we merely get
S : Stone with a surjection p : S ↠ X such that for all s : S we have Cs ⊆ 2N closed and
a surjection Σ2NCs ↠ Y (p(s)). This gives a surjection Σs:S,α:2NCs(α) ↠ Σx:XYx and the
source is Stone by Remark 3.4 and Corollary 3.12. ◀

4.3 Stone spaces are stable under sigma types
We will show that Stone spaces are precisely totally disconnected compact Hausdorff spaces.
We will use this to prove that a sigma type of Stone spaces is Stone.

▶ Lemma 4.12. Assume X : CHaus, then 2X is countably presented.

Proof. There is some surjection q : S ↠ X with S : Stone. This induces an injection of
Boolean algebras 2X ↪→ 2S . Note that a : S → 2 lies in 2X if and only if:

∀s,t:S q(s) =X q(t) → a(s) = a(t).

As equality in X is closed and equality in 2 is decidable, the implication is open for every
s, t : S. By Corollary 4.4, we conclude that 2X is an open subalgebra of 2S . Therefore, it is
in ODisc by Lemma 2.8 and Lemma 2.7 and in Booleω by Corollary 2.14. ◀
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▶ Definition 4.13. For all X : CHaus and x : X, we define Qx the connected component of
x as the intersection of all D ⊆ X decidable such that x ∈ D.

▶ Lemma 4.14. For all X : CHaus with x : X, we have that Qx is a countable intersection
of decidable subsets of X.

Proof. By Lemma 4.12, we can enumerate the elements of 2X , say as (Dn)n:N. For n : N we
define En as Dn if x ∈ Dn and X otherwise. Then ∩n:NEn = Qx. ◀

▶ Lemma 4.15. Assume X : CHaus with x : X and suppose U ⊆ X open with Qx ⊆ U .
Then we have some decidable E ⊆ X with x ∈ E and E ⊆ U .

Proof. By Lemma 4.14, we have Qx =
⋂

n:N Dn with Dn ⊆ X decidable. If Qx ⊆ U , then

Qx ∩ ¬U =
⋂
n:N

(Dn ∩ ¬U) = ∅.

By Lemma 4.5 there is some k : N with

(
⋂

n≤k

Dn) ∩ ¬U =
⋂

n≤k

(Dn ∩ ¬U) = ∅.

Therefore
⋂

n≤k Dn ⊆ ¬¬U . As U is open, ¬¬U = U and E :=
⋂

n≤k Dn is as desired. ◀

▶ Lemma 4.16. Assume X : CHaus with x : X. Then any map in Qx → 2 is constant.

Proof. Assume Qx = A ∪ B with A, B decidable and disjoint subsets of Qx. Assume x ∈ A.
By Lemma 4.14, Qx ⊆ X is closed. Using Remark 3.15, it follows that A, B ⊆ X are
closed and disjoint. By Lemma 4.9 there exist U, V disjoint open such that A ⊆ U and
B ⊆ V . By Lemma 4.15 we have a decidable D such that Qx ⊆ D ⊆ U ∪ V . Note that
E := D ∩ U = D ∩ (¬V ) is clopen, hence decidable by Corollary 1.22. But x ∈ E, hence
B ⊆ Qx ⊆ E but B ∩ E = ∅, hence B = ∅. ◀

▶ Lemma 4.17. Let X : CHaus, then X is Stone if and only ∀x:X Qx = {x}.

Proof. By Axiom 1, it is clear that for all x : S with S : Stone we have that Qx = {x}.
Conversely, assume X : CHaus such that ∀x:X Qx = {x}. We claim that the evaluation map
e : X → Sp(2X) is both injective and surjective, hence an equivalence. Let x, y : X be such
that e(x) = e(y), i.e. such that f(x) = f(y) for all f : 2X . Then y ∈ Qx, hence x = y by
assumption. Thus e is injective. Let q : S ↠ X be a surjective map. It induces an injection
2X ↪→ 2S , which by Axiom 2 induces a surjection p : Sp(2S) ↠ Sp(2X). Note that e ◦ q is
equal to p so e is surjective. ◀

▶ Theorem 4.18. Assume S : Stone and T : S → Stone. Then Σx:ST (x) is Stone.

Proof. By Lemma 4.11 we have that Σx:ST (x) is a compact Hausdorff space. By Lemma 4.17
it is enough to show that for all x : S and y : T (x) we have that Q(x,y) is a singleton. Assume
(x′, y′) ∈ Q(x,y), then for any map f : S → 2 we have that:

f(x) = f ◦ π1(x, y) = f ◦ π1(x′, y′) = f(x′)

so that x′ ∈ Qx and since S is Stone, by Lemma 4.17 we have that x = x′. Therefore we
have Q(x,y) ⊆ {x} × T (x). Assume z, z′ : Q(x,y), then for any map g : T (x) → 2 we have that
g(z) = g(z′) by Lemma 4.16. Since T (x) is Stone, we conclude z = z′ by Lemma 4.17. ◀
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4.4 The unit interval as a compact Hausdorff space
Since we have dependent choice, the unit interval I = [0, 1] can be defined using Cauchy
reals or Dedekind reals. We can freely use results from constructive analysis [3]. As we have
¬WLPO, MP and LLPO, we can use the results from constructive reverse mathematics that
follow from these principles [11, 7].
▶ Definition 4.19. We define for each n : N the Stone space 2n of binary sequences of length
n. And we define csn : 2n → Q by csn(α) =

∑
i<n

α(i)
2i+1 . Finally we write ∼n for the binary

relation on 2n given by α ∼n β ↔ |csn(α) − csn(β)| ≤ 1
2n .

▶ Remark 4.20. The inclusion Fin(n) ↪→ N induces a restriction _|n : 2N → 2n for each n : N.
▶ Definition 4.21. We define cs : 2N → I as cs(α) =

∑∞
i=0

α(i)
2i+1 .

▶ Theorem 4.22. The type I is a compact Hausdorff space.
Proof. By LLPO, we have that cs is surjective. Note that cs(α) = cs(β) if and only if for
all n : N we have α|n ∼n β|n. This is a countable conjunction of decidable propositions, so
that equality in I is closed. ◀

The following is also given by Definitions 2.7 and 2.10 of [3].
▶ Definition 4.23. Assume given x, y : I and α, β : 2N such that x = cs(α), y = cs(β). Then
x < y is the proposition ∃n:N csn(α) + 1

2n <Q csn(β), which is independent of the choice of
α, β.
▶ Remark 4.24. For all x, y : I, we have that x < y is an open proposition and that x ̸= y is
equivalent to (x < y) ∨ (y < x).
▶ Lemma 4.25. For all D ⊆ 2N decidable, we have that cs(D) is a finite union of closed
intervals.
Proof. If D is contains precisely the α : 2N with a fixed initial segment, cs(D) is a closed
interval. Any decidable subset of 2N is a finite union of such subsets. ◀

▶ Lemma 4.26. The complement of a finite union of closed intervals is a finite union of
open intervals.
By Corollary 4.7 we can thus conclude:
▶ Lemma 4.27. Every open U ⊆ I can be written as a countable union of open intervals.
It follows that the topology of I is generated by open intervals, which corresponds to the
standard topology on I. Hence our notion of continuity agrees with the ϵ, δ-definition of
continuity one would expect and we get the following:
▶ Theorem 4.28. Every function f : I → I is continuous in the ϵ, δ-sense.

5 Cohomology

In this section we compute H1(S,Z) = 0 for all S Stone, and show that H1(X,Z) for X

compact Hausdorff can be computed using Čech cohomology. We use this to compute
H1(I,Z) = 0.
▶ Remark 5.1. We only work with the first cohomology group with coefficients in Z as it is
sufficient for the proof of Brouwer’s fixed-point theorem, but the results could be extended
to Hn(X, A) for A any family of countably presented abelian groups indexed by X.
▶ Remark 5.2. We write Ab for the type of abelian groups and if G : Ab we write BG for
the delooping of G [13, 22]. This means that H1(X, G) is the set truncation of X → BG.
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5.1 Čech cohomology

▶ Definition 5.3. Given a type S, types Tx for x : S and A : S → Ab, we define Č(S, T, A)
as the chain complex

∏
x:S ATx

x

∏
x:S A

T 2
x

x
∏

x:S A
T 3

x
x

d0 d1

where the boundary maps are defined as

d0(α)x(u, v) = αx(v) − αx(u)
d1(β)x(u, v, w) = βx(v, w) − βx(u, w) + βx(u, v)

▶ Definition 5.4. Given a type S, types Tx for x : S and A : S → Ab, we define its Čech
cohomology groups by

Ȟ0(S, T, A) = ker(d0) Ȟ1(S, T, A) = ker(d1)/im(d0)

We call elements of ker(d1) cocycles and elements of im(d0) coboundaries.

This means that Ȟ1(S, T, A) = 0 if and only if Č(S, T, A) is exact at the middle term.
Now we give three general lemmas about Čech complexes.

▶ Lemma 5.5. Assume a type S, types Tx for x : S and A : S → Ab with t :
∏

x:S Tx. Then
Ȟ1(S, T, A) = 0.

Proof. Assume given a cocycle, i.e. β :
∏

x:S A
T 2

x
x such that for all x : S and u, v, w : Tx

we have that βx(u, v) + βx(v, w) = βx(u, w). We define α :
∏

x:S ATx
x by αx(u) = βx(tx, u).

Then for all x : S and u, v : Tx we have that d0(α)x(u, v) = βx(tx, v) − βx(tx, u) = βx(u, v)
so that β is a coboundary. ◀

▶ Lemma 5.6. Given a type S, types Tx for x : S and A : S → Ab, we have that
Ȟ1(S, T, λx.ATx

x ) = 0.

Proof. Assume given a cocycle, i.e. β :
∏

x:S A
T 3

x
x such that for all x : S and u, v, w, t : Tx

we have that βx(u, v, t) + βx(v, w, t) = βx(u, w, t). We define α :
∏

x:S A
T 2

x
x by αx(u, t) =

βx(t, u, t). Then for all x : S and u, v, t : Tx we have that d0(α)x(u, v, t) = βx(t, v, t) −
βx(t, u, t) = βx(u, v, t) so that β is a coboundary. ◀

▶ Lemma 5.7. Assume a type S and types Tx for x : S such that
∏

x:S∥Tx∥ and A : S → Ab
such that Ȟ1(S, T, A) = 0. Then given α :

∏
x:S BAx with β :

∏
x:S(α(x) = ∗)Tx , we can

conclude α = ∗.

Proof. We define g :
∏

x:S A
T 2

x
x by gx(u, v) = βx(v) − βx(u). It is a cocycle in the Čech

complex, so that by exactness there is f :
∏

x:S ATx
x such that for all x : S and u, v : Tx

we have that gx(u, v) = fx(v) − fx(u). Then we define β′ :
∏

x:S(α(x) = ∗)Tx by β′
x(u) =

βx(u) − fx(u) so that for all x : S and u, v : Tx we have that β′
x(u) = β′

x(v) is equivalent to
fx(v) − fx(u) = βx(v) − βx(u), which holds by definition. So β′ is constant on each Tx and
therefore gives

∏
x:S(α(x) = ∗)∥Tx∥. By

∏
x:S∥Tx∥ we conclude α = ∗. ◀
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5.2 Cohomology of Stone spaces
▶ Lemma 5.8. Assume given S : Stone and T : S → Stone such that

∏
x:S∥T (x)∥. Then

there exists a sequence of finite types (Sk)k:N with limit S and a compatible sequence of
families of finite types Tk over Sk with

∏
x:Sk

∥Tk(x)∥ and limk

(∑
x:Sk

Tk(x)
)

=
∑

x:S T (x).

Proof. By theorem Theorem 4.18 and the usual correspondence between surjections and
families of inhabited types, a family of inhabited Stone spaces over S correspond to a Stone
space T with a surjection T → S. Then we conclude using Remark 3.4. ◀

▶ Lemma 5.9. Assume given S : Stone with T : S → Stone such that
∏

x:S∥Tx∥. Then we
have that Ȟ1(S, T,Z) = 0.

Proof. We apply Lemma 5.8 to get Sk and Tk finite. Then by Corollary 3.7 we have that
Č(S, T,Z) is the sequential colimit of the Č(Sk, Tk,Z). By Lemma 5.5 we have that each of
the Č(Sk, Tk,Z) is exact, and a sequential colimit of exact sequences is exact. ◀

▶ Lemma 5.10. Given S : Stone, we have that H1(S,Z) = 0.

Proof. Assume given a map α : S → BZ. We use local choice to get T : S → Stone such that∏
x:S∥Tx∥ with β :

∏
x:S(α(x) = ∗)Tx . Then we conclude by Lemma 5.9 and Lemma 5.7. ◀

▶ Corollary 5.11. For any S : Stone the canonical map B(ZS) → (BZ)S is an equivalence.

Proof. This map is always an embedding. To show it is surjective it is enough to prove that
(BZ)S is connected, which is precisely Lemma 5.10. ◀

5.3 Čech cohomology of compact Hausdorff spaces
▶ Definition 5.12. A Čech cover consists of X : CHaus and S : X → Stone such that∏

x:X∥Sx∥ and
∑

x:X Sx : Stone.

By definition any compact Hausdorff space X is part of a Čech cover (X, S).

▶ Lemma 5.13. Given a Čech cover (X, S) and A : X → Ab, we have an isomorphism
H0(X, A) = Ȟ0(X, S, A) natural in A.

Proof. By definition an element in Ȟ0(X, S, A) is a map f :
∏

x:X ASx
x such that for all

u, v : Sx we have f(u) = f(v). Since Ax is a set and the Sx are merely inhabited, this is
equivalent to

∏
x:X Ax. Naturality in A is immediate. ◀

▶ Lemma 5.14. Given a Čech cover (X, S) we have an exact sequence

H0(X, λx.ZSx) → H0(X, λx.ZSx/Z) → H1(X,Z) → 0

Proof. We use the long exact cohomology sequence associated to

0 → Z → ZSx → ZSx/Z → 0

We just need H1(X, λx.ZSx) = 0 to conclude. But by Corollary 5.11 we have that
H1(X, λx.ZSx) = H1 (

∑
x:X Sx,Z) which vanishes by Lemma 5.10. ◀

▶ Lemma 5.15. Given a Čech cover (X, S) we have an exact sequence

Ȟ0(X, S, λx.ZSx) → Ȟ0(X, S, λx.ZSx/Z) → Ȟ1(X, S,Z) → 0
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Proof. For n = 1, 2, 3, we have that Σx:XSn
x is Stone so that H1(Σx:XSn

x ,Z) = 0 by
Lemma 5.10, giving short exact sequences

0 → Πx:XZSn
x → Πx:X(ZSx)Sn

x → Πx:X(ZSx/Z)Sn
x → 0

They fit together in a short exact sequence of complexes

0 → Č(X, S,Z) → Č(X, S, λx.ZSx) → Č(X, S, λx.ZSx/Z) → 0

But since Ȟ1(X, λx.ZSx) = 0 by Lemma 5.6, we conclude using the associated long exact
sequence. ◀

▶ Theorem 5.16. Given a Čech cover (X, S), we have that H1(X,Z) = Ȟ1(X, S,Z)

Proof. By applying Lemma 5.13, Lemma 5.14 and Lemma 5.15 we get that H1(X,Z) and
Ȟ1(X, S,Z) are cokernels of isomorphic maps, so they are isomorphic. ◀

This means that Čech cohomology does not depend on S.

5.4 Cohomology of the interval
▶ Remark 5.17. Recall from Definition 4.19 that there is a binary relation ∼n on 2n =: In

such that (2n, ∼n) is equivalent to (Fin(2n), λx, y. |x − y| ≤ 1) and for α, β : 2N we have
(cs(α) = cs(β)) ↔ (∀n:Nα|n ∼n β|n).

We define I∼2
n = Σx,y:In

x ∼n y and I∼3
n = Σx,y,z:In

x ∼n y ∧ y ∼n z ∧ x ∼n z.

▶ Lemma 5.18. For any n : N we have an exact sequence

0 → Z d0−→ ZIn
d1−→ ZI∼2

n
d2−→ ZI∼3

n

where d0(k) = (_ 7→ k) and

d1(α)(u, v) = α(v) − α(u)
d2(β)(u, v, w) = β(v, w) − β(u, w) + β(u, v).

Proof. It is clear that the map Z → ZIn is injective as In is inhabited, so the sequence
is exact at Z. Assume a cocycle α : ZIn , meaning that for all u, v : In, if u ∼n v then
α(u) = α(v). Then by Remark 5.17 we see that α is constant, so the sequence is exact at
ZIn .

Assume a cocycle β : ZI∼2
n , meaning that for all u, v, w : In such that u ∼n v, v ∼n w

and u ∼n w we have that β(u, v) + β(v, w) = β(u, w). Using Remark 5.17 to pass along the
equivalence between 2n and Fin(2n), we define α(k) = β(0, 1) + · · · + β(k − 1, k). We can
check that β(k, l) = α(l) − α(k), so that β is indeed a coboundary and the sequence is exact
at ZI∼2

n . ◀

▶ Proposition 5.19. We have that H0(I,Z) = Z and H1(I,Z) = 0.

Proof. Consider cs : 2N → I and the associated Čech cover T of I defined by:

Tx = Σy:2N(x =I cs(y))

Then for l = 2, 3 we have that limnI∼l
n =

∑
x:I T l

x. By Lemma 5.18 and stability of exactness
under sequential colimit, we have an exact sequence

0 → Z → colimnZIn → colimnZI∼2
n → colimnZI∼3

n
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By Corollary 3.7 this sequence is equivalent to

0 → Z → Πx:IZTx → Πx:IZT 2
x → Πx:IZT 3

x

So it being exact implies that Ȟ0(I, T,Z) = Z and Ȟ1(I, T,Z) = 0. We conclude by
Lemma 5.13 and Theorem 5.16. ◀

▶ Remark 5.20. We could carry a similar computation for S1, by approximating it with 2n

with 0n ∼n 1n added. We would find H1(S1,Z) = Z. We will give an alternative, more
conceptual proof in the next section.

5.5 Brouwer’s fixed-point theorem
Here we consider the modality defined by localising at I as explained in [14]. It is denoted
by LI. We say that X is I-local if LI(X) = X and that it is I-contractible if LI(X) = 1.

▶ Lemma 5.21. Z and 2 are I-local.

Proof. By Proposition 5.19, from H0(I,Z) = Z we get that the map Z → ZI is an equivalence,
so Z is I-local. We see that 2 is I-local as it is a retract of Z. ◀

▶ Remark 5.22. Since 2 is I-local, we have that any Stone space is I-local.

▶ Lemma 5.23. BZ is I-local.

Proof. Any identity type in BZ is a Z-torsor, so it is I-local by Lemma 5.21. So the map
BZ → BZI is an embedding. From H1(I,Z) = 0 we get that it is surjective, hence an
equivalence. ◀

▶ Lemma 5.24. Assume X a type with x : X such that for all y : X we have f : I → X such
that f(0) = x and f(1) = y. Then X is I-contractible.

Proof. For all y : X we get a map g : I → LI(X) such that g(0) = [x] and g(1) = [y]. Since
LI(X) is I-local this means that

∏
y:X [x] = [y]. We conclude

∏
y:LI(X)[x] = y by applying

the elimination principle for the modality. ◀

▶ Corollary 5.25. We have that R and D2 = {(x, y) : R2 | x2 + y2 ≤ 1} are I-contractible.

▶ Proposition 5.26. LI(R/Z) = BZ.

Proof. As for any group quotient, the fibers of the map R → R/Z are Z-torsors, so we have
an induced pullback square

R 1

R/Z BZ

Now we check that the bottom map is an I-localisation. Since BZ is I-local by Lemma 5.23,
it is enough to check that its fibers are I-contractible. Since BZ is connected it is enough to
check that R is I-contractible. This is Corollary 5.25. ◀

▶ Remark 5.27. By Lemma 5.23, for any X we have that H1(X,Z) = H1(LI(X),Z), so that
by Proposition 5.26 we have that H1(R/Z,Z) = H1(BZ,Z) = Z.
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We omit the proof that S1 = {(x, y) : R2 | x2 + y2 = 1} is equivalent to R/Z. The
equivalence can be constructed using trigonometric functions, which exist by Proposition
4.12 in [3].

▶ Proposition 5.28. The map S1 → D2 has no retraction.

Proof. By Corollary 5.25 and Proposition 5.26 we would get a retraction of BZ → 1, so BZ
would be contractible. ◀

▶ Theorem 5.29 (Intermediate value theorem). For any f : I → I and y : I such that f(0) ≤ y

and y ≤ f(1), there exists x : I such that f(x) = y.

Proof. By Corollary 4.3, the proposition ∃x:I f(x) = y is closed and therefore ¬¬-stable, so
we can proceed with a proof by contradiction. If there is no such x : I, we have f(x) ̸= y for
all x : I. By Remark 4.24 we have that a < b or b < a for all distinct numbers a, b : I. So the
following two sets cover I

U0 := {x : I | f(x) < y} U1 := {x : I | y < f(x)}

Since U0 and U1 are disjoint, we have I = U0 + U1 which allows us to define a non-constant
function I → 2, which contradicts Lemma 5.21. ◀

▶ Theorem 5.30 (Brouwer’s fixed-point theorem). For all f : D2 → D2 there exists x : D2

such that f(x) = x.

Proof. As above, by Corollary 4.3, we can proceed with a proof by contradiction, so we
assume f(x) ̸= x for all x : D2. For any x : D2 we set dx = x − f(x), so we have that one of
the coordinates of dx is invertible. Let Hx(t) = f(x) + t · dx be the line through x and f(x).
The intersections of Hx and ∂D2 = S1 are given by the solutions of an equation quadratic in
t. By invertibility of one of the coordinates of dx, there is exactly one solution with t > 0.
We denote this intersection by r(x) and the resulting map r : D2 → S1 has the property that
it preserves S1. Then r is a retraction from D2 onto its boundary S1, which is a contradiction
by Proposition 5.28. ◀

▶ Remark 5.31. In constructive reverse mathematics [7], it is known that both the intermediate
value theorem and Brouwer’s fixed-point theorem are equivalent to LLPO. But LLPO does
not hold in real cohesive homotopy type theory, so [16] prove a variant of the statement
involving a double negation.
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