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Abstract

Synthetic algebraic geometry uses homotopy type theory extended with three axioms to develop

algebraic geometry internal to a higher version of the Zariski topos. In this article we make no

essential use of the higher structure and use homotopy type theory only for convenience. We define

étale, smooth and unramified maps between schemes in synthetic algebraic geometry using a new

synthetic definition. We give the usual characterizations of these classes of maps in terms of injectivity,

surjectivity and bijectivity of differentials. We also show that the tangent spaces of smooth schemes

are finite free modules. Finally, we show that unramified, étale and smooth schemes can be understood

very concretely via the expected local algebraic description.
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Introduction

In mathematics, it is common practice to assume a fixed set theory, usually with the axiom of choice, as a
common basis. While it is a great advantage to work in one common language and share a lot of the basic
constructions, the dual approach of adapting the “base language” to particular mathematical domains is
sometimes more concise, provides a new perspective and encourages new proof techniques which would
be hard to find otherwise. We use the word “synthetic” to indicate that the latter approach is used, as it
was used by Lawvere, when he described a program to develop mathematics inside of certain categories
[Law79].

Just using category theory is not the same as reasoning synthetically – for the latter the goal is usually
to derive results exclusively in one system, as Lawvere did with differential geometry in his work. The

1

http://arxiv.org/submit/6354085/pdf


distinction with just using an abstraction like categories is important, since the translation from the
synthetic language and back can become quite cumbersome.

Starting with Lawvere’s work, more differential geometry was developed synthetically [Koc06] along
with a study of the models of the theory [MR90]. One basic axiom of the theory, the Kock-Lawvere axiom
admits intuitive reasoning with nilpotent infinitesimals. We will describe this axiom in the following, since
the duality axiom in synthetic algebraic geometry is a generalization. The Kock-Lawvere axiom is added
to a basic language which works in good enough categories, for example toposes and admits a couple of
basic sets like , {∗} and N exist and for objects A, B natural constructions like A×B or AB exists and
behave as they would for sets – we also have predicates P (x) for elements x : A and can form subobjects
like {x : A | P (x)}. In this language, we assume there is a fixed ring R, which can be thought of as the
real numbers and if we take the D(1) := {x ∈ R | x2 = 0} to be the set of all square-zero elements of R,
then the Kock-Lawvere axiom gives us a bijection

e : R×R→ RD(1)

which commutes with evaluation at 0 and projection to the first factor. The intuition is that D(1) is
so small that any function on it is linear and therefore determined by its value and its derivative at
0 ∈ D(1). So with this axiom, the derivative at 0 : R of a function f : R → R may then be defined as
π2(e

−1(f|D(1))), which is the start of a convenient way to develop calculus, wihtout defining any further
structures on R and other objects – reasoning sythetically means here, that we can just work with these
objects as sets.

To give just an example: The tangent bundle of a manifold M can be defined as MD(1) and vector
fields as sections of the canonical map MD(1) →M . Then it is easy to see that a vector field is the same
as a map ζ : D(1) → MM with ζ(0) = idM , which can be interpreted as an infinitesimal transformation
of the identity map. This style of reasoning with spaces as if they were sets is also central in current
synthetic algebraic geometry and can be quite convenient.

The Kock-Lawvere axiom above and many of the axioms used in synthetic reasoning are incompatible
with the law of excluded middle and therefore also with the axiom of choice. It is however a recurring
phenomen that restricted versions of excluded middle and choice are compatible with synthetic languages
in the sense that they are supported by a model. A very basic example is, that equality of natural
numbers is decidable, meaning that two natural numbers are either equal or not equal.

The use of nilpotent elements to capture infinitesimal quantities as mentioned above was inspired by
the Grothendieck school of algebraic geometry and Anders Kock also worked with an extended axiom
[Koc] suitable for synthetic algebraic geometry, where the role of D(1) above can be taken by any finitely
presented affine scheme. In 2017 Ingo Blechschmidt finished his doctoral thesis in which he noticed a
property holding internally in the Zariski-topos, which he called synthetic quasi-coherence – this was
a more general and internal verision of what Kock used. In 2018, David Jaz Myers1 started to work
with a specialization of Blechschmidt’s synthetic quasi-coherence and used homotopy type theory as a
base language, which is the standard in synthetic algebraic geometry now and we will highlight some
implications below. Myer’s specialized axiom is what we now call duality axiom.

To state the duality axiom we need the general concept behind the space D(1), which is space that
are the common zeros of some system of polynomial equations over R. Such a system can be encoded
representation independent by a finitely presented R-algebra, i.e. an R-algebra A which is of the form
R[X1, . . . , Xn]/(P1, . . . , Pl) for some numbers n, l and polynomials Pi ∈ R[X1, . . . , Xn]. Then the zero
set of the system is given by the type HomR-Alg(A,R) of R-algebra homomorphisms from A to the base
ring, which we denote by SpecA. Now the duality axiom states that Spec is the inverse to exponentiating
with R, i.e. for all finitely presented R-algebras A the following is an isomorphism:

(a 7→ (ϕ 7→ ϕ(a))) : A→ RSpecA.

Using homotopy type theory as a language for synthetic algebraic geometry is, in addition to con-
venience, also a language for synthetic homotopy theory. So instead of the usual practice in algebraic
topology to provide model spaces using point-set topology, one can start directly at the level of homotopy
types and instead of implementing their higher structure with Kan complexes, there are rules which do
not mention any implementation. The rules of homotopy type theory allow to work with the basic objects
of the theory, types, in very much the same way as one would work with sets in traditional mathematics
– with the clear exception of the law of excluded middle and the axiom of choice - although the former

1Myer’s never published on the subject, but communicated his ideas to Felix Cherubini and in talks to a larger audience
[Mye19b; Mye19a].
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and restricted versions of the latter can be assumed. Both can be seen as stating something about the
spatial structure. The law of excluded middle allows us to find a complement of each subset of a given
set A, which exposes A as a coproduct. This is not true in topology, for example, R is not the coproduct
of the topological subspaces {0} and R/{0}. The axiom of choice states that any surjection has a section.
This is also not true in topology and would trivialize all cohomology. Thus, constructive reasoning in the
sense of not using these two axioms is a necessity if we want to use spatial collections in the same way
we use sets. In synthetic algebraic geometry, we work inside homotopy type theory and remind readers
of this by using the notation x : X which can often be thought of as x ∈ X . [Shu21] is an introduction
to homotopy type theory for a general mathematical audience.

One of the main advantages of using specifically homotopy type theory and not a different internal
language, is that it is possible to make cohomological computations, using homotopy type theory for
synthetic homotopical reasoning. This means that we are mixing two synthetic approaches, combining
their advantages, which rests on the possibility of interpreting homotopy type theory in higher toposes
[Shu19] and not just the higher topos of ∞-groupoids. The general idea of using homotopy type theory
to combine some kind of synthetic, spatial reasoning with synthetic homotopy theory, goes back at least
to 2014, to Mike Shulman and Urs Schreiber [SS14]. Schreiber suggested to the HoTT community at
various occasions to make use of HoTT as the internal language of higher toposes, where specifities of
the topos are accessed in the language via modalities. This approach was shown to be quite effective
and intuitive in Shulman’s [Shu18] work on mixing synthetic homotopy theory in the form of HoTT and
a synthetic approach to topology using a triple of modalities – a structure called cohesion by Lawvere
[Law07].

One of Schreiber’s motivation was to make use of the modern perspective on cohomology, which in a
higher topos can be realized as the connected components of a space of maps. This can be mimicked in
HoTT, like follows: Let X be a type and A an abelian group and n : N, then

Hn(X,A) := ‖X → K(A, n)‖0

is the n-th cohomology group of X with coefficients in A, where ‖ ‖0 is the 0-truncation, an operation
which turns a type with possibly non-trivial higher identity types into a set – a type with trivial higher
structure. The type K(A, n) is the n-th Eilenberg MacLane space, which can always be constructed for
any abelian group A and comes with an isomorphism Ωn(K(A, n)) ≃ A. This definition of cohomology
groups allows using the synthetic homotopy theory to reason about cohomology, which had been already
done successfully at the time for the cohomology of homotopy types, like spheres and finite CW-complexes.
But, in this case, this kind of reasoning is applied to study 0-types.

In 2022, trying to use this approach to calculate cohomology groups in synthetic algebraic geometry
led to the discovery of what is now called Zariski-local choice [CCH24], which is an additional axiom
that holds in some cubical models of HoTT based on the Zariski-topos. It is a weakening of the axiom
of choice which can be formulated as: For any surjective map f : X → Y , there exists a section, i.e. a
map s : Y → X such that f ◦ s = idY . Zariski-local choice also states the existence of a section, but only
Zariski-local and only for surjections into an affine scheme: For any surjection f : E → SpecA, there
exists a Zariski-cover U1, . . . , Un of SpecA and maps si : Ui → E such that f(si(x)) = x for all x ∈ Ui.

In homotopy type theory, we use the propositional truncation ‖ ‖ to define surjections and more
generally what we mean with “exists”. Propositional truncation turns an arbitrary type A into a type
‖A‖ with the property x = y for all x, y : ‖A‖. Types with this property are called propositions or
(-1)-types in homotopy type theory. Using a univalent universe of types U we have that surjection into
a type A are the same as type families F : A → U , such that we have ‖F (x)‖ for all x : A. Using
type families instead of maps allows us to drop the condition that the maps we get are sections, since
we can express it using dependent function types and we arrive at the formulation of Zariski-local choice
given below in the list of axioms. In this instance and many others, homotopy type theory provides a lot
of convience when working very formally, which is an advantage in formalization of synthetic algebraic
geometry.

In total, apart from homotopy type theory and a fixed commutative ring R we use in synthetic
algebraic geometry the following three axioms – we will provide some explanation for the first one below:

Axiom (Locality)
R is a local ring, i.e. whenever x+ y is invertible x is invertible or y is invertible.

Axiom (Duality)
For any finitely presented R-algebra A, the homomorphism

a 7→ (ϕ 7→ ϕ(a)) : A→ (SpecA→ R)

3



is an isomorphism of R-algebras.

Axiom (Zariski-local choice)
Let A be a finitely presented R-algebra and let B : SpecA → U be a family of inhabited types. Then
there exists a Zariski-cover U1, . . . , Un ⊆ SpecA together with dependent functions si : (x : Ui)→ B(x).

With the Kock-Lawvere axiom, we introduced the first historic predeccessor of the duality axiom
as a strating point for convenient infinitesimal computations, while this is also possible in synthetic
algebraic geometry, the general duality axiom has a lot of surprising consequences. In line with classical
algebraic geometry, it shows that we have the usual anti-equivalence between finitely presented R-algebras
and affine schemes of finite presentation over R. What is more surprising, is the consequence that all
functions R → R are polynomials and that it has implications on the properties of the base ring R. For
example, for all x : R, x is invertible if and only if we have x 6= 0. Duality also implies that affine schemes
can only have bounded maps to the natural numbers.

Surprisingly, the Zariski-local choice axiom was also usable to solve problems which have no obvious
connection to cohomology. For example, it admits a proof that pointwise open subsets of an affine scheme
are the same as subsets which are given by unions of non-vanishing sets of functions on the scheme. In
more detail, we say a proposition P is open, if there are a natural number n and elements r1, . . . , rn of
the base ring R, such that P is equivalent to the proposition r1 6= 0∨ · · · ∨ rn 6= 0. Then we call a subset
U of a type X open, if the proposition x ∈ U is open for all x : X . Using Zariski-local choice, these
pointwise existing ring elements can be turned into locally existing functions. For an affine scheme X
it is even the case, that an open subset in the pointwise sense, is a union of non-vanishing sets D(fi)
of global functions fi : SpecA → R. An analogous result holds also for closed propositions, which are
propositions of the form r1 = 0∧ · · · ∧ rn = 0 for ri : R and vanishing sets of functions on affine schemes.

The connection between pointwise and local openness is important to make the synthetic definition
of a scheme work well: A scheme is a type X , that merely has a finite open cover by affine schemes. To
produce interesting examples, it is neccessary to use the locality axiom. This is related to the Zariski
topology and ensures that classical examples of Zariski covers can be reproduced. The main example is
projective space, which can be defined as the quotient of Rn+1/{0} by the action of R× by scaling. A
cover of this type is given by sets of equivalence classes of the form {[x0 : · · · : xn]|xi 6= 0}, which is
clearly open by the pointwise definition. To see that it is a cover, one has to note that for x : Rn+1, x 6= 0
is equivalent to one of the entries xi being different from 0. In constructive algebra, this is the case if R
is a local ring.

Contribution and organization of the article. We define étale, smooth and unramified schemes
and maps in synthetic algebraic geometry in a novel way using what we call closed dense propositions
(Definition 1.1.2). This is an instance of a general phenomenon in synthetic reasoning, that concepts which
are usually defined locally can be defined pointwise or on the level of propositions. While describing
the infinitesimal structure of schemes in section 2, we also point out a curious discovery of which we
have not found any counterpart in the classical literatures: there is a duality between finitely presented
modules over the internal base ring R and finitely copresented modules over the same ring (Lemma 2.3.10
and corollary 2.3.11). The latter notion of finitely copresented modules is not very prominent in algebra,
but appears naturally in the study of tangent spaces of schemes (Lemma 2.2.8).

We show that the new definitions agree with straightforward translations of the classical concepts
(Remark 1.4.2) and provide some characterizations using tangent spaces: a map between schemes is
unramified if and only if it induces injections on all tangent spaces and étale if and only if it induces
isomorphisms (Proposition 3.2.1 and corollary 4.1.2). Furthermore, a map from a smooth scheme is
smooth if and only if it induces surjections on tangent spaces (Corollary 4.1.1).

Finally, we show that unramified, étale and smooth schemes can be described very concretely in
the expected way by conditions on the polynomials locally describing such schemes (Proposition 3.3.2
and lemmas 4.3.3 and 4.3.4). An important intermediate result for the characterization of smooth schemes
is that their tangent spaces are finite free R-modules (Proposition 4.2.4)

1 Formally étale, unramified and smooth types

1.1 Definitions

In [CCH24] it is shown that elements of the base ring R are nilpotent if and only if they are not not zero.
Both, nilpotency and double negated equality have been used to describe infinitesimals and the following
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closed dense propositions can be viewed as closed subspaces of the point which are infinitesimally close
to being the whole point:

Definition 1.1.1 A closed proposition is dense if it is merely of the form:

r1 = 0 ∧ · · · ∧ rn = 0

for r1, · · · , rn : R nilpotent.

From a classical perspective, the inclusion P ⊆ 1 of a closed dense prosition into the point would
be an infinitesimal extension. We will use closed dense propositions in the following to define synthetic
analogs of some classical notions, which are classically defined with lifting properties against more general
classes of infinitesimal extensions. More details on the connection to classical definitions will be given in
Remark 1.4.2.

Definition 1.1.2 A type X is formally étale (resp. formally unramified, formally smooth) if for all closed
dense proposition P the map:

X → XP

is an equivalence (resp. an embedding, surjective).

Remark 1.1.3 The map X → XP is an equivalence (resp. an embedding, surjective) if and only if for
any map P → X we have a unique (resp. at most one, merely one) dotted lift in:

P X

1

Definition 1.1.4 A map is said to be formally étale (resp. formally unramified, formally smooth) if its
fibers are formally étale (resp. formally unramified, formally smooth).

Remark 1.1.5 A type (or map) is formally étale if and only if it is formally unramified and formally
smooth.

Lemma 1.1.6 A type X is formally étale (resp. formally unramified, formally smooth) if and only if for
all ǫ : R such that ǫ2 = 0, the map:

X → Xǫ=0

is an equivalence (resp. an embedding, surjective).

Proof The direct direction is obvious as ǫ = 0 is closed dense when ǫ2 = 0.
For the converse, assume P = Spec(R/N) a closed dense proposition. Then the map R→ R/N with

N finitely generated nilpotent ideal can be decomposed as:

R→ A1 → · · ·An = R/N

where Ak is a quotient of R by a finitely generated nilpotent ideal and:

Ak → Ak+1

is of the form:
A→ A/(a)

for some a : A with a2 = 0.
We write Pk = Spec(Ak) and:

ik : Pk+1 → Pk

so that fibik(x) is a(x) = 0 where a(x)2 = 0 holds.
Then by hypothesis we have that for all k and x : Pk the map:

X → Xfibik
(x)
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is an equivalence (resp. an embedding, surjective). So the map:

XPk →
∏

x:Pk

Xfibik
(x) = XPk+1

is an equivalence (resp. an embedding, surjective by Pk having choice). We conclude that the map:

X → XP

is an equivalence (resp. an embedding, surjective). �

1.2 Stability results

Being formally étale is a modality given as nullification at all dense closed propostions and therefore lex
[RSS20, Corollary 3.12]. This means we have the following results:

Proposition 1.2.1 • If X is any type and for all x : X we have a formally étale type Yx, then:
∏

x:X

Yx

is formally étale.

• If X is formally étale and for all x : X we have a formally étale type Yx, then:
∑

x:X

Yx

is formally étale.

• If X is formally étale then for all x, y : X the type x = y is formally étale.

• The type of formally étale types is formally étale.

Formally unramified type are the separated types [Chr+20, Definition 2.13] associated to formally
étale types. By [Chr+20, Lemma 2.15], being formally unramified is a nullification modality as well.

Lemma 1.2.2 A type X is formally unramified if and only if for any x, y : X the type x = y is formally
étale.

This means we have the following:

Proposition 1.2.3 • If X is any type and for all x : X we have a formally unramified type Yx, then:
∏

x:X

Yx

is formally unramified.

• If X is formally unramified and for all x : X we have a formally unramified type Yx, then:
∑

x:X

Yx

is formally unramified.

Being formally smooth is not a modality, indeed we will see it is not stable under identity types.
Neverthless we have the following results:

Lemma 1.2.4 • If X is any type satifying choice and for all x : X we have a formally smooth type
Yx, then: ∏

x:X

Yx

is formally smooth.

• If X is a formally smooth type and for all x : X we have a formally smooth type Yx, then:
∑

x:X

Yx

is formally smooth.
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1.3 Type-theoretic examples

The next proposition implies that open propositions are formally étale.

Lemma 1.3.1 Any ¬¬-stable proposition is formally étale.

Proof Assume U is a ¬¬-stable proposition. For U to be formally étale it is enough to check that
UP → U for all P closed dense. This holds because for P closed dense we have ¬¬P . �

Lemma 1.3.2 A closed and formally étale proposition is decidable.

Proof Given a formally étale closed proposition P , let us prove it is ¬¬-stable. Indeed if ¬¬P then P
is closed dense so that P → P implies P since P is formally étale.

Let I be the finitely generated ideal in R such that:

P ↔ I = 0

We have that I2 = 0 implies ¬¬(I = 0) which implies I = 0. But then we have that I = I2, so that by
Nakayama (see [LQ15, Lemma II.4.6]) there exists e : R such that eI = 0 and 1− e ∈ I. If e is invertible
then I = 0, if 1− e in invertible then I = R. �

Proposition 1.3.3 The type Bool is formally étale.

Proof The identity types in Bool are decidable so Bool is formally unramified. Consider ǫ : R such that
ǫ2 = 0 and a map:

ǫ = 0→ Bool

we want to merely factor it through 1.
Since Bool ⊆ R, by duality the map gives f : R/(ǫ) such that f2 = f . Since R/(ǫ) is local we conclude

that f = 1 or f = 0 and so the map has constant value 0 : Bool or 1 : Bool. �

Remark 1.3.4 This means that formally étale (resp. formally unramified, formally smooth) types are
stable by finite sums. In particular finite types are formally étale.

Proposition 1.3.5 The type N is formally étale.

Proof Identity types in N are decidable so N is formally unramified, we want to show it is formally
smooth. Assume given a map:

P → N

for P a closed dense proposition, we want to show it merely factors through 1. By boundedness the map
merely factors through a finite type, which is formally étale by Remark 1.3.4 so we conclude. �

Lemma 1.3.6 Any proposition is formally unramified.

This means that any subtype of a formally unramified type is formally unramified.

Remark 1.3.7 Given any lex modality, a type is separated if and only if it is a subtype of a modal type,
so a type is formally unramified if and only if it is a subtype of a formally étale type.

We also have the following surprising dual result, meaning that any quotient of a formally smooth
type is formally smooth:

Proposition 1.3.8 If X is formally smooth and p : X → Y surjective, then Y is formally smooth.

Proof For any P closed dense and any diagram:

P Y

1 Xx

p

by choice for closed propositions we merely get the dotted diagonal, and since X is formally smooth we
get the dotted x, and then p(x) gives a lift. �
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1.4 Classical definitions, examples and counter-examples

We will show in this section that our definition of étale/smooth/unramified maps and types is equivalent
to a internal version of the classical definition. It is important to keep in mind, that our schemes are
always locally of finite presentation, so the following definition is sensible:

Definition 1.4.1 A étale (resp. unramified, smooth) type is a scheme which is étale (resp. unrami-
fied, smooth). A étale (resp. unramified, smooth) map is a map between schemes which is étale (resp.
unramified, smooth).

The following criterion appears as the definition of a formally étale/smooth/unramified map in
[EGAIV4, §17], with the only difference, that the lifting property is stated in terms of the compari-
son map into a pullback and also non-finitely presented algebras and general ideals are considered. The
latter is superfluous for maps between schemes, where, as stated above, we only consider schemes that are
locally of finite presentation. It is however not clear if this internal criterion corresponds to the (external)
definitions in [EGAIV4, §17].

Remark 1.4.2 Let f : X → Y be a map such that every fiber is a scheme. Then f is formally
étale/smooth/unramified if and only if there is exactly one/at least one/at most one lift in all squares

Spec(A/N) X

Spec(A) Y

t

f

b

whereA is a finitely presentedR-algebra,N a finitely generated nilpotent ideal and the map Spec(A/N)→
Spec(A) is induced by the quotient map.

For the proof we will use a cohomological result and the notion of wqc R-modules from [CCH24], to
prove the result as stated above – this is would not be neccessary, if we would weaken the statement in
the smooth case to Zariski-local existence of lifts.

Proof The inclusion of a closed dense proposition P into 1 is a special case of the left in the remark,
so we only need to show, that formally étale, formally smooth and formally unramified maps satisfy
the more general lifting property. For formally étale and unramified maps, we can just apply the lifting
property for closed dense propositions for all points in SpecA. So let f : X → Y be formally smooth.

Without loss of generality, we can assume N is of the form (a) with a square-zero. Then the existence
of a lift can be shown by finding a family of lifts for each point v : SpecA with ǫ := a(v) and φ induced
by t:

ǫ = 0 fibf (b(v)) =: Xv

1

φ

For any two lifts ψ, ξ, we have ¬¬(ψ = ξ) and can therefore assume Xv = SpecR[X1, . . . , Xn]/P1, . . . , Pl.
We merely have y : Rn such that the dual to φ is given by evaluation at y. Then lifts are given by
vectors x : Rn such that P (x) = 0 and ǫ = 0 implies x = y. The latter dualizes to an inclusion of ideals
(x1 − y1, . . . , xn − yn) ⊆ (ǫ). So we have xi − yi = aiǫ. Putting everything together, we get the following
type of lifts:

Lv,y :=
∑

α:(ǫ)n

dPy(α) = −P (y)

Let Mv,y := {α : (ǫ)n|dPy(α) = 0}, then Mv,y is a wqc R-module and Ly has the structure of an Mv,y-
torsor. For a different choice y′ : Rn, also inducing φ, we get y′ = y+ β for some β : (ǫ)n. By computing
P (y′ + α) in different ways we have:

P (y) + dPy(β + α) = P (y + β) + dPy+β(α) = P (y) + dPy(β) + dPy+β(α)

And therefore dPy(β + α) = dPy(β) + dPy+β(α) and dPy+β(α) = dPy(α), which means that Mv,y is
independent of y, so let us write Mv instead. We also have:

Lv,y′ =
∑

α:(ǫ)n

dPy(β + α) = −P (y)
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so translation by β give a isomorphism of Mv-torsors. So we get a well-defined Mv-torsor Lv by Krauss’
Lemma for 1-types. Then by [CCH24], H1(v : SpecA,Mv) vanishes and we therefore have a global lift.�

The following lemma is easy to proof – we conclude this section afterwards with counter examples for
smoothness and one example of an étale scheme.

Lemma 1.4.3 For all k : N, we have that Ak is smooth.

Proof Let P be a closed dense proposition and N a nilpotent, finitely generated ideal such that P =
SpecR/N . Then SpecR[X1, . . . , Xk] = Ak is smooth lifts always exist as indicated below by the universal
property of R[X1, . . . , Xk]:

R/N R[X1, . . . , Xk]

R

�

Example 1.4.4 The affine scheme Spec(R[X ]/X2) is not smooth.

Proof If it were smooth then, for any ǫ with ǫ3 = 0, we would be able to prove ǫ2 = 0. Indeed we would
merely have a dotted lift in:

R/(ǫ2) R[X ]/(X2)

R

ǫ

that is, an r : R such that (ǫ+ rǫ2)2 = 0. Then ǫ2 = 0. �

Example 1.4.5 The affine scheme Spec(R[X,Y ]/XY ) is not smooth.

Proof Again, we assume a lift for any ǫ with ǫ3 = 0:

R/(ǫ2) R[X,Y ]/(XY )

R

where the top map sends both X and Y to ǫ. Then we have r, r′ : R such that (ǫ+ rǫ2)(ǫ + r′ǫ2) = 0 so
that ǫ2 = 0. �

We will proof a generalization of the following example in Lemma 4.3.3. The essential step is to
improve a zero g(y) = 0 up to some square-zero ǫ to an actual zero.

Example 1.4.6 Let g be a polynomial in R[X ] such that for all x : R we have that g(x) = 0 implies
g′(x) 6= 0. Then:

Spec(R[X ]/g)

is étale.

1.5 Being formally étale, unramified or smooth is Zariski local

Lemma 1.5.1 Let X with (Ui)i:I be a finite open cover of X . Then X is formally étale (resp. formally
unramified, formally smooth) if and only if all the Ui are formally étale (resp. formally unramified,
formally smooth).

Proof First, we show this for formally unramified:
• Any subtype of a formally unramified type is formally unramified by Lemma 1.3.6.

• Conversely, assume X with such a cover, for all x, y : X there exists i : I such that x ∈ Ui and then:

x =X y ↔
∑

y∈Ui

x =Ui
y

which is formally étale because open propositions are formally étale by Lemma 1.3.1.

9



Now for formally smooth:
• Open propositions are formally smooth by Lemma 1.3.1 so that open subtypes of formally smooth
types are formally smooth.

• Conversely if each Ui is formally smooth then Σi:IUi is formally smooth by Remark 1.3.4, so we
can conclude by applying Proposition 1.3.8 to the surjection:

Σi:IUi → X

The result for formally étale immediately follows. �

Corollary 1.5.2 For all k : N, the projective space Pk is smooth.

Proof By Lemma 1.5.1 it is enough to check that Ak is smooth. This is Lemma 1.4.3 �

2 Linear algebra and tangent spaces

2.1 Modules and infinitesimal disks

The most basic infinitesimal schemes are the first order neighbourhoods in affine n-space Rn. Their
algebra of functions is Rn+1, which is an instance of the more general construction below.

For any R-module M , there is an R-algebra structure on R⊕M with multiplication given by

(r,m)(r′,m′) = (rr′, rm′ + r′m)

Algebras of this form are called square zero extensions of R, since products of the form (0,m)(0, n) are
zero. By this property, for any R-linear map ϕ : M → N between modules M,N , the map id ⊕ ϕ :
R⊕M → R⊕N is an R-algebra homomorphism. In particular, if M is finitely presented, i.e. merely the
cokernel of some p : Rn → Rm then R⊕M is the cokernel of a map between finitely presented algebras
and therefore finitely presented as an algebra.

Definition 2.1.1 GivenM a finitely presented R-module, we define a finitely presented algebra structure
on R⊕M as above and set:

D(M) :≡ Spec(R⊕M)

This is a pointed scheme by the first projection which we denote 0 and the construction is functorial by
the discussion above.

We write D(n) for D(Rn) so that for example:

D(1) = Spec(R[X ]/(X2)) = {ǫ : R | ǫ2 = 0}

Definition 2.1.2 Assume given M a finitely presented R-module and A a finitely presented R-algebra
with x : Spec(A). An M -derivation at x is a morphism of R-modules:

d : A→M

such that for all a, b : A we have that:

d(ab) = a(x)d(b) + b(x)d(a)

Lemma 2.1.3 Assume given M a finitely presented module and A a finitely presented algebra with
x : Spec(A). Pointed maps:

D(M)→pt (Spec(A), x)

correspond to M -derivations at x.

Proof Such a pointed map correponds to an algebra map:

f : A→ R⊕M

where the composite with the first projection is x. This means that, for some module map d : A → M
we have:

f(a) = (a(x), d(a))

We can immediately see that f being a map of R-algebras is equivalent to d being an M -derivation at
x. �
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Lemma 2.1.4 LetM , N be finitely presented modules. Then linear mapsM → N correspond to pointed
maps D(N)→pt D(M).

Proof By Lemma 2.1.3 such a pointed map corresponds to an N -derivation at 0 : D(M).
Such a derivation is a morphism of modules:

d : R⊕M → N

such that for all (r,m), (r′,m′) : R ⊕M we have that:

d(rr′, rm′ + r′m) = rd(r′,m′) + r′d(r,m)

This implies d(r, 0) = 0 for all r : R, so we obtain a section to the injective functorial action of D on
linear maps. �

2.2 Tangent spaces

Definition 2.2.1 Let X be a type and let x : X , then we define the tangent space Tx(X) of X at x by:

{t : D(1)→ X | t(0) = x}

Definition 2.2.2 Given f : X → Y and x : X we have a map:

dfx : Tx(X)→ Tf(x)(Y )

induced by post-composition.

Lemma 2.2.3 For all x : Rn we have Tx(R
n) = Rn.

Proof Since Rn is homogeneous we can assume x = 0. By Lemma 2.1.3 we know that T0(R
n) corresponds

to the type of linear maps
R[X1, · · · , Xn]→ R

such that for all P,Q we have:
d(PQ) = P (0)dQ +Q(0)dP

which is equivalent to d(1) = 0 and d(XiXj) = 0, so any such map is determined by its image on the Xi

so it is equivalent to an element of Rn. �

Lemma 2.2.4 Given a scheme X with x : X and v, w : Tx(X), there exists a unique:

ψv,w : D(2)→pt X

such that for all ǫ : D(1) we have that:
ψv,w(ǫ, 0) = v(ǫ)

ψv,w(0, ǫ) = w(ǫ)

Proof We can assume X is affine. Then D(2) →pt X is equivalent to the type of R2-derivations at x,
but giving an M ⊕N -derivation is equivalent to giving an M -derivation and an N -derivation. Checking
the equalities is a routine computation. �

Lemma 2.2.5 For any scheme X and x : X , we have that Tx(X) is a module.

Proof There is a more conceptual proof given as [Mye22, Theorem 4.2.19] which could be made to work
with schemes – we proceed by sketching a more tedious, explicit proof with less technical prerequisites.
We define scalar multiplication by sending v to t 7→ v(rt).

Then for addition of v, w : Tx(X), we define:

(v + w)(ǫ) = ψv,w(ǫ, ǫ)

where ψv,w is defined in Lemma 2.2.4.
We omit checking that this is a module structure. �

Lemma 2.2.6 For f : X → Y a map between schemes, for all x : X the map dfx is a map of R-modules.
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Proof Commutation with scalar multiplication is immediate.
Commutation with addition comes by applying uniqueness in Lemma 2.2.4 to show:

f ◦ ψv,w = ψf◦v,f◦w �

Lemma 2.2.7 For any map f : X → Y and x : X , we have that:

Ker(dfx) = T(x,reflf(x))(fibf (f(x)))

Proof This holds because:
(fibf (f(x)), (x, reflf(x)))

is the pullback of:
(X, x)→ (Y, f(x))← (1, ∗)

in pointed types, applied using (D(1), 0). �

Lemma 2.2.8 Let X be a scheme with x : X . Then Tx(X) is a finitely copresented R-module.

Proof We can assume X affine. For some map P : Rm → Rn we have X = fibP (0). By applying
Lemma 2.2.7 we know that Tx(X) is the kernel of dPx : Tx(R

m)→ T0(R
n) for all x : X . We conclude by

Lemma 2.2.3. �

Corollary 2.2.9 Let X be a scheme, then the tangent bundle XD(1) is a scheme.

Proof We give two independent arguments, the first uses the lemma, the second is a direct computation:
(i) Finitely copresented modules are schemes, since they are the common zeros of linear functions on

Rn. So by the lemma, all tangent spaces Tx(X) are schemes and

XD(1) =
∑

x:X

Tx(X)

is a dependent sum of schemes and therefore a scheme.

(ii) LetX be covered by open affine U1, . . . , Un then U
D(1)
1 , . . . , U

D(1)
n is an open cover by double negation

stability of opens. So we conclude by showing that for affine Y = SpecR[X1, . . . , Xn]/(f1, . . . , fl)
the tangent bundle Y D(1) is affine by direct computation:

Y D(1) = HomR-Alg(R[X1, . . . , Xn]/(f1, . . . , fl), R⊕ ǫR)

= {(y1, . . . , yn) : R⊕ ǫR | ∀i.fi(y1, . . . , yn) = 0}

= {(x1, . . . , xn, d1, . . . , dn) : R
2n | ∀i.fi(x1, . . . , xn) = 0 and

∑

j

dj
∂fi
∂Xj

(x1, . . . , xn) = 0} �

Definition 2.2.10 For X a type and p : X a point, the cotangent space at p is the R-linear dual TpX
⋆

of the tangent space TpX .

If X is a scheme, then by lemma 2.2.8 the cotangent spaces of X are finitely presented. We will not
use the following definition and remark in the rest of this article, but included them to show a connection
to the classical theory. See [Har77, p. 172] or [Vak, p. 573] for the classical theory.

Definition 2.2.11 For A an R-module, there is a universal derivation d : A→ ΩA/R. We call elements
of the type ΩA/R Kähler differentials .

That is, ΩA/R is generated as an A-module by symbols df for f : A, subject to relations d = r · df for
r : R and d(fg) = f · dg+ g · df . It can be seen that if A is finitely presented as an R-algebra, then ΩA/R

is finitely presented as an A-module. Classically, the sheaf ΩA/R is the cotangent bundle. Synthetically,
it is enough to show this pointwise on SpecA by [CCH24, Theorem 8.2.3]. To apply this, we first turn
ΩA/R into an R-module bundle on SpecA: For p : SpecA, let ΩA/R,p be the type of R-derivations at p,
as defined in Definition 2.1.2 – this agrees with tensoring ΩA/R,p with R using the evaluation at p, which
is the general construction used in [CCH24, Theorem 8.2.3].
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Remark 2.2.12 For all p : SpecA, we have ΩA/R,p ≃ TpX
⋆ and therefore also ΩA/R ≃

∏
x:SpecA TpX

⋆.

Proof We need to show that for p : X , we have an isomorphism of R-modules

T ⋆
pX ≃ ΩA/R,p = ΩA/R ⊗A R.

By Lemma 2.1.3 the tangent space TpX corresponds to derivations A→ R, where the A-module structure
on R is obtained by evaluating at p. These derivations correspond to A-module maps ΩA/R → R, by the
universal property of Kähler differentials. In Corollary 2.3.11, we will see that double dualization is an
isomorphism for finitely (co-)presented R-modules, so we can conclude by dualizing. �

2.3 Infinitesimal neighbourhoods

Definition 2.3.1 Let X be a set with x : X . The first order neighborhood N1(x) is defined as the set of
y : X such that there exists an finitely generated ideal I ⊆ R with I2 = 0 and:

I = 0→ x = y

Lemma 2.3.2 Assume x, y : Rn, then x ∈ N1(y) if and only if the ideal generated by the xi− yi squares
to zero.

Proof Let us denote I the ideal generated by the xi − yi so that x = y if and only if I = 0.
If I2 = 0 then it is clear that y ∈ N1(x).
Conversely if J = 0→ I = 0 then we have that I ⊂ J by duality so that J2 = 0 implies I2 = 0. �

Lemma 2.3.3 Let X be a scheme with x : X . Then N1(x) is an affine scheme.

Proof If x ∈ U open in X , we have that N1(x) ⊂ U so that we can assume X affine.
This means X is a closed subscheme C ⊂ Rn. Then by Lemma 2.3.2, we have that N1(x) is the type

of y : Rn such that y ∈ C and for all i, j we have that (xi − yi)(xj − yj) = 0, which is a closed subset of
C so it is an affine scheme. �

Definition 2.3.4 A pointed scheme (X, ∗) is called a first order (infinitesimal) disk if for all x : X we
have x ∈ N1(∗).

Lemma 2.3.5 N1 extends to a functor from pointed schemes to first order disks.

Proof Since for x : X , N1(x) is just a subspace the functoriality is clear once we know that the defining
relation of first order disks is preserved by functions between schemes. It is enough to consider f : X → Y
for affine X,Y ⊆ Rn. So let x, y : X such that y ∈ N1(x). Then for ǫ := x − y we have eiej = 0 for all
i, j and

f(x)− f(y) = f(x)− f(x+ ǫ) = f(x)− (f(x) + dfxǫ) = −dfxǫ

which means that f(y) ∈ N1(f(x)). �

Lemma 2.3.6 A pointed scheme (X, ∗) is a first order disk if and only if there exists a finitely presented
module M such that:

(X, ∗) = (D(M), 0)

Proof First we check that for all M finitely presented and y : D(M) we have that y ∈ N1(0). Let
m1, · · · ,mn be generators of M , then consider d : M → R induced by y, then y = 0 if and only if d = 0
and for all i, j we have that:

d(mi)d(mj) = 0

This means that I = (d(m1), · · · , d(mn)) has square 0 and I = 0 implies y = 0 so that y ∈ N1(0).
For the converse we assume X a first order disk, by Lemma 2.3.3 we have that X is affine and pointed,

up to translation we can assume X ⊂ Rn closed pointed by 0. Since X is a first order disk we have that
X ⊂ N1(0) and by Lemma 2.3.2 we have N1(0) = D(Rn).

This means there is an f.g. ideal J in R⊕Rn such that X = Spec(R⊕Rn/J). But 0 corresponds to
the first projection from R⊕Rn, so that 0 ∈ X means that if (x, y) ∈ J then x = 0, so that J corresponds
uniquely to an f.g. sub-module K of Rn and:

X = Spec(R ⊕ (Rn/K)) = D(Rn/K) �
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Definition 2.3.7 Let M⋆ :≡ HomR(M,R) denote the R-linear dual of an R-module M .

While it is clear that the dual of a finite presentation yields a finite copresentation, the reverse is not
true in general, but holds with the duality axiom. We will give a proof of this fact in Lemma 2.3.10,
which will need the following two extension results.

Lemma 2.3.8 Let M ⊆ Rn be the kernel of a linear map between finite free R-modules. Then any
linear map M → R can be extended to Rn.

Proof First note that M = Spec(R[X1, . . . , Xn]/(l1, . . . , lm)) is affine, where the li are linear. Let
L : M → R be R-linear and P : Rn → R be given by taking a preimage under the quotient map

R[X1, . . . , Xn]→ R[X1, . . . , Xn]/(l1, . . . , lm), so we have P|M = L. Let P =
∑

σ:N{1,...,n} aσX
σ(1)
1 · · ·X

σ(n)
n .

Now we can conclude by showing that the linear part of P

K :≡
∑

σ:N{1,...,n},
∑

σ=1

aσX
σ(1)
1 · · ·Xσ(n)

n

extends L as well, i.e. we will see K|M = L.

For all x :M and λ : R we have L(λx) = λL(x) and therefore

∑

σ:N{1,...,n}

λ
∑

σaσx
σ(1)
1 · · ·xσ(n)n = λ

∑

σ:N{1,...,n}

aσx
σ(1)
1 · · ·xσ(n)n

By comparing coefficients as polynomials in λ, we have
∑

σ:N{1,...,n},
∑

σ 6=1 aσx
σ(1)
1 · · ·x

σ(n)
n = 0, which

shows K|M = P|M = L. �

Lemma 2.3.9 Let ϕ : Rn → Rm be R-linear, then any linear map im(ϕ)→ R on the image of ϕ can be
extended to Rm.

Proof 2 Let (aij)ij be the coefficients of the matrix representing ϕ with respect to the standard basis.
Then the image of ϕ is generated by the columns of this matrix:

im(ϕ) =





n∑

j=1

xj(a j) | xj : R, 1 ≤ j ≤ n





Let L : im(ϕ) → R be R-linear and lj :≡ L((a j)). Applying L to a general element of im(ϕ) and using
linearity yields the following implication:

n∑

j=1

xj(a j) = 0⇒

n∑

j=1

xj lj = 0

The left side being 0 means that m linear polynomials Pi(x1, . . . , xn) :≡
∑n

j=1 xjaij vanish simulata-
neously. Let Q(x1, . . . , xn) be the linear polynomial on the right side of the implication. Then the impli-
cation induces an inclusion between the common zeros of the Pi and the zeros ofQ, which by duality means
that we have an inclusion of ideals (Q) ⊆ (P1, . . . , Pm) in R[X1, . . . , Xn]. So there bi : R[X1, . . . , Xn]
such that

Q =

m∑

i=1

biPi

By comparing coefficients it is clear that the bi can be chosen to be in R, which we assume now. We

2This proof is due to Thierry Coquand.

14



define a R-linear map K : Rm → R by K((y1, . . . , ym)T ) :≡
∑m

i=1 biyi. K extends L:

K




n∑

j=1

xj(a j)


 =

m∑

i=1

bi

n∑

j=1

xjaij

=

m∑

i=1

biPi(x1, . . . , xn)

=Q(x1, . . . , xn)

=

n∑

j=1

xj lj

=L




n∑

j=1

xj(a j)


 �

Lemma 2.3.10 Let M be finitely copresented, i.e. let there be an exact sequence

M Rn Rmϕ P

Then the dual of this sequence is exact as well and ϕ⋆ is surjective. In particular,M⋆ is finitely presented.

Proof Surjectivity of ϕ⋆ follows from Lemma 2.3.8. Linear maps Rn → R which vanish on M factor
over the image of P , so exactness at the middle of the dual sequence follows from Lemma 2.3.9. �

Corollary 2.3.11 For any module M finitely presented or finitely copresented, we have that M⋆⋆ =M .

Lemma 2.3.12 The functor from finitely copresented modules to first order disks:

M 7→ D(M⋆)

is an equivalence, with inverse:
(X, x) 7→ Tx(X)

Proof It is fully faithful by Lemma 2.1.4 and essentially surjective by Lemma 2.3.6. To check for the
inverse it is enough to check that:

T0(D(M
⋆)) =M

But by Lemma 2.1.4 we have that T0(D(M
⋆)) =M⋆⋆ and we conclude by Corollary 2.3.11. �

Lemma 2.3.13 Let X be a scheme with x : X , then we have:

N1(x) = D(Tx(X)⋆)

Proof By Lemma 2.3.3 we have that (N1(x), x) is a first order disk. By Lemma 2.3.12 it is enough to
check that Tx(N1(x)) = T0(D(Tx(X)⋆)).

It is immediate that any map f : D(1)→ X uniquely factors through N1(f(0)) so that Tx(N1(x)) =
Tx(X), and we have that T0(D(Tx(X)⋆)) = Tx(X) by Lemma 2.3.12. �

2.4 Projectivity of finitely copresented modules

Finitely copresented R-modules are projective objects in the category of finitely copresented R-modules,
which means that all surjections between finitely copresented R-modules split. The results in this section
will not be used in the rest of the article.

Lemma 2.4.1 Let M be a finitely copresented module, then we have T0(M) =M .

Proof We have that M is the kernel of a linear map P : Rm → Rn. By Lemma 2.2.7 we have that
T0(M) is the kernel of:

dP0 : T0(R
m)→ T0(R

n)

but by Lemma 2.2.3 this is a map from Rm to Rn, we omit the verification that dP0 = P . �
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Lemma 2.4.2 Any finitely copresented module is projective.

Proof We consider M,N finitely copresented with a surjective map:

f :M → N

By Lemma 2.3.13 and Lemma 2.4.1 we know that D(M∗) = N1(0) in M , so that we have a commutative
diagram:

D(M⋆) M

D(N⋆) N

f

i

Since D(N∗) has choice and f is surjective there is g : D(N⋆)→M such that f ◦ g = i. Up to translation
we can assume g(0) = 0. Then we can factor g through D(M⋆) as N1 is functorial by Lemma 2.3.5. This
gives us a pointed section of the map:

D(M⋆)→ D(N⋆)

which by Lemma 2.1.4 gives a linear section of f . �

Lemma 2.4.3 A linear map between finitely copresented module:

f :M → N

is surjective if and only if the corresponding pointed map:

D(M⋆)→ D(N⋆)

merely has a section preserving 0.

Proof By Lemma 2.1.4 we know that:
D(M⋆)→ D(N⋆)

merely having a section preserving 0 is equivalent to:

f :M → N

merely having a section. But since any finitely copresented module is projective, this is equivalent to f
being surjective. �

3 Formally unramified schemes

3.1 Unramified schemes

Lemma 3.1.1 Let X be an affine scheme, the following are equivalent:
(i) X is formally unramified.

(ii) Identity types in X are decidable.

(iii) For all x : X , we have that Tx(X) = 0.

Proof (i) implies (ii): By Lemma 1.3.2.
(ii) implies (i): Decidable propositions are formally étale.
(ii) implies (iii): Assume given x : X with t : Tx(X), then for all ǫ : D(1) we have ¬¬(ǫ = 0) so that

we have ¬¬(t(ǫ) = t(0)) which implies t(ǫ) = t(0) since equality is assumed decidable. Therefore t = 0 in
Tx(X).

(iii) implies (i): Indeed given ǫ : R such that ǫ2 = 0, assume x, y : X such that ǫ = 0→ x = y. Then
x ∈ N1(y) and by Lemma 2.3.13 and Ty(X) = 0 we conclude x = y. �

Corollary 3.1.2 Let X be a scheme, the following are equivalent:
(i) X is formally unramified.
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(ii) Identity types in X are open.

(iii) For all x : X , we have that Tx(X) = 0.

Proof Assume (Ui)i:I a finite cover of X by affine schemes. By Lemma 1.5.1 we have that X is formally
unramified if and only if Ui is formally unramified for all i : I.

(ii) implies (i). By Lemma 1.3.1.

(i) implies (iii). Indeed for all x : X there exists i : I such that x ∈ Ui and then Tx(X) = Tx(Ui) and
Tx(Ui) = 0 by Lemma 3.1.1.

(iii) implies (ii). Assume x, y : X , then:

x =X y ↔ Σy∈Ui
x =Ui

y

By Lemma 3.1.1 we have that identity types in Ui is decidable, so x =X y is open. �

3.2 Unramified morphisms between schemes

Now we generalise this to maps between schemes.

Proposition 3.2.1 A map between schemes is unramified if and only if its differentials are injective.

Proof The map dfx is injective if and only if its kernel is 0. By Lemma 2.2.7, this means that dfx is
injective for all x : X if and only if:

∏

x:X

T(x,reflf(x))(fibf (f(x))) = 0

On the other hand having fibers with trivial tangent space is equivalent to:

∏

y:Y

∏

x:X

∏

p:f(x)=y

T(x,p)(fibf (y)) = 0

Both are equivalent by path elimination on p. �

3.3 Unramified schemes are locally standard

Definition 3.3.1 A scheme is called standard unramified if it is of the form:

Spec(R[X1, · · · , Xn]/P1, · · · , Pk)

with k ≥ n such that the determinant of:

(
∂Pi

∂Xj

)

1≤i,j≤n

is invertible.

Proposition 3.3.2 A scheme is unramified if and only if it has a cover by standard unramified schemes.

Proof By Lemma 1.5.1, it is enough to consider an affine scheme X = Spec(R[X1, · · · , Xn]/P1, · · · , Pk).
For any x : X , by Lemma 2.2.7 we have an exact sequence:

0 Tx(X) Rn Rk

By Lemma 3.1.1, X is unramified if and only if Tx(X) = 0 for all x : X .

We have Tx(X) = ker(Jac(P1, · · · , Pk)x), so that Tx(X) = 0 if and only if n ≤ k and this Jacobian has
an invertible n-minor. The latter is the case for a standard unramified scheme and the converse follows
by covering according to which n-minor is invertible and reordering variables. �
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4 Formally smooth and étale schemes

4.1 Smooth and étale maps between schemes

Note that it is immediate from the definition of smoothness that smooth maps induce surjections on
tangent spaces. We have a converse when the domain is smooth.

Corollary 4.1.1 Let f : X → Y be a map between schemes with X smooth. Then the following are
equivalent:

(i) The map f is smooth.

(ii) For all x : X , the induced map:

df : Tx(X)→ Tf(x)(Y )

is surjective.

Proof (i) implies (ii). Assume given a map v : D(1)→ Y such that v(0) = f(x), then for all t : D(1) we
have a map:

t = 0→ fibf (v(t))

so since f is smooth we merely have wt : fibf (v(t)) such that t = 0 implies wt = 0. We conclude using
choice over D(1).

(ii) implies (i). Assume given y : Y and ǫ : R such that ǫ2 = 0 and try to merely find a dotted lift in:

ǫ = 0 fibf (y)

1

φ

Since X is formally smooth we merely have an x : X such that:

∏

p:ǫ=0

φ(p) = x

and therefore:

ǫ = 0→ y = f(x)

which means that y ∈ N1(f(x)). We use Lemma 2.4.3 to get that the map N1(x) → N1(f(x)) induced
by f merely has a section s sending f(x) to x.

Then s(y) : fibf (y) such that for all p : ǫ = 0 we have that:

φ(p) = x = s(f(x)) = s(y) �

Corollary 4.1.2 Let f : X → Y be a map between schemes. Assume X is smooth. Then the following
are equivalent:

(i) The map f is étale.

(ii) For all x : X , the induced map:

df : Tx(X)→ Tf(x)(Y )

is an iso.

Proof We apply Proposition 3.2.1 and Corollary 4.1.1. �

4.2 Smooth schemes have free tangent spaces

Lemma 4.2.1 Assume X is a smooth scheme. Then for any x : X the type Tx(X) is formally smooth.
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Proof Consider T (X) = XD(1) the total tangent bundle of X . We have to prove that the map:

p : T (X)→ X

is formally smooth. Both source and target are schemes, and the source is formally smooth because X is
smooth and D(1) has choice. So by Corollary 4.1.1 it is enough to prove that for all x : X and v : Tx(X)
the induced map:

dp : T(x,v)(T (X))→ Tx(X)

is surjective.
Consider u : Tx(X). By unpacking the definition of tangent spaces and computing dp(w), we see that

merely finding w : T(x,v)(T (X)) such that dp(w) = u means merely finding:

φ : D(1)× D(1)→ X

such that for all t : D(1) we have that:
φ(0, t) = v(t)

φ(t, 0) = u(t)

But we know that there exists a unique:

ψv,u : D(2)→ X

such that:
ψv,u(0, t) = v(t)

ψv,u(t, 0) = u(t)

as defined in Lemma 2.2.4.
Then the fact that X is smooth and that the fibers of:

D(2)→ D(1)× D(1)

are closed dense with D(1)×D(1) having choice means that there merely exists a lift of ψv,w to D(1)×D(1),
which gives us the φ we wanted. �

Lemma 4.2.2 Assume given a linear map:

M : Rm → Rn

which has a formally smooth kernel K. Then we can decide whether M = 0.

Proof Since M = 0 is closed, it is enough to prove that it is ¬¬-stable to conclude that it is decidable
by Lemma 1.3.1 and Lemma 1.3.2. Assume ¬¬(M = 0), then for any x : Rm we have a dotted lift in:

M = 0 K

1

7→x

because K is formally smooth, so that we merely have y : K such that:

M = 0→ x = y

which implies that ¬¬(x = y) since we assumed ¬¬(M = 0).
Then considering a basis (x1, · · · , xn) of Rm, we get (y1, · · · , yn) such that for all i we have that

M(yi) = 0 and ¬¬(yi = xi). But then we have that (y1, · · · , yn) is infinitesimally close to a basis and
that being a basis is an open proposition, so that (y1, · · · , yn) is a basis and M = 0. �

Lemma 4.2.3 Assume that K is a finitely copresented module that is also formally smooth. Then it is
finite free.

Proof Assume a finite copresentation:

0→ K → Rm M
→ Rn

We proceed by induction on m. By Lemma 4.2.2 we can decide whether M = 0 or not.
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• If M = 0 then K = Rm and we can conclude.

• If M 6= 0 then we can find a non-zero coefficient in the matrix corresponding to M , and so up to
base change it is of the form:




1 0 · · · 0
0
...
0

M̃




But then we know that the kernel of M is equivalent to the kernel of M̃ , and by applying the
induction hypothesis we can conclude that it is finite free. �

Proposition 4.2.4 Let X be a smooth scheme. Then for any x : X we have that Tx(X) is finite free.

Proof By Lemma 4.2.1 we have that Tx(X) is formally smooth, so that we can conclude by Lemma 4.2.3.�

The dimension of Tx(X) is called the dimension of X at x. By boundedness any smooth scheme is a
finite sum of smooth schemes of a fixed dimension. We can turn this into a definition of dimension which
works well in the case of smooth schemes:

Definition 4.2.5 A scheme is smooth of dimension n, if it is smooth and all tangent spaces are finite
free R-modules of dimension n.

4.3 Standard étale and standard smooth schemes

Definition 4.3.1 A standard smooth scheme of dimension k is an affine scheme of the form:

Spec
(
R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn

)

where the determinant of: (
∂Pi

∂Xj

)

1≤i,j≤n

is invertible.

Definition 4.3.2 A standard smooth scheme of dimension 0 is called a standard étale scheme.

Lemma 4.3.3 Standard étale schemes are étale.

Proof Assume given a standard étale algebra:

R[X1, · · · , Xn]/P1, · · · , Pn

and write:

P : Rn → Rn

for the map induced by P1, · · · , Pn.

Assume given ǫ : R such that ǫ2 = 0, we need to prove that there is a unique dotted lifting in:

R/ǫ R[X1, · · · , Xn]/P1, · · · , Pn

R

x

This means that for all x : Rn such that P (x) = 0 mod ǫ, there exists a unique y : Rn such that:

• We have x = y mod ǫ.

• We have P (y) = 0.
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First we prove existence. For any b : Rn we compute:

P (x+ ǫb) = P (x) + ǫ dPx(b)

We have that P (x) = 0 mod ǫ, say P (x) = ǫa. Since ¬¬(P (x) = 0), we have that dPx is invertible. Then
taking b = −(dPx)

−1(a) gives a lift y = x+ ǫb such that P (y) = 0.
Now we check unicity. Assume y, y′ two such lifts, then y = y′ mod ǫ and we have:

P (y) = P (y′) + dPy′(y − y′)

and P (y) = 0 and P (y′) = 0 so that:
dPy′(y − y′) = 0

But dPy′ is invertible and we can conclude that y = y′. �

Lemma 4.3.4 Any standard smooth scheme of dimension k is smooth of dimension k (Definition 4.2.5).

Proof The fibers of the map:

Spec
(
R[X1, · · · , Xn, Y1, · · ·Yk]/P1, · · · , Pn

)
→ Spec(R[Y1, · · ·Yk])

are standard étale, so the map is étale by Lemma 4.3.3. Since:

Spec(R[Y1, · · ·Yk]) = A
k

is smooth by Lemma 1.4.3, we can conclude it is smooth using Lemma 1.2.4.
For the dimension we use Lemma 2.2.3 and Corollary 4.1.2. �

4.4 Smooth schemes are locally standard smooth

Proposition 4.4.1 A scheme is smooth of dimension k if and only if it has a finite open cover by
standard smooth schemes of dimension k.

Proof We can assume the scheme X affine, say of the form:

X = Spec(R[X1, · · · , Xm]/P1, · · · , Pl)

By Proposition 4.2.4, for any x : X we have that dPx has free kernel. We partition by the dimension
k of the kernel. Then by Lemma .0.5 we know that dPx has rank n = m− k for every x.

We cover X according to which n-minor is invertible, so that up to a rearranging of variables and
polynomials we can assume that:

X = Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn, Q1, · · · , Ql)

where we have:

dPx,y =




(
∂P
∂X

)
x,y

(
∂P
∂Y

)
x,y(

∂Q
∂X

)
x,y

(
∂Q
∂Y

)
x,y




where we used the notation: (
∂P

∂X

)

x,y

=
((

∂Pi

∂Xj

)
x,y

)

i,j

so that ∂P
∂X is invertible of size n. Moreover by Lemma .0.4 we get:

(
∂Q

∂Y

)

x,y

=

(
∂Q

∂X

)

x,y

(
∂P

∂X

)−1

x,y

(
∂P

∂Y

)

x,y

which will be useful later.
Now we prove that for any (x, y) : Rn+k such that P (x, y) = 0 it is decidable whether

Q(x, y) = 0

To do this it is enough to prove that:

(Q1(x, y), · · · , Ql(x, y))
2 = 0→ (Q1(x, y), · · · , Ql(x, y)) = 0

Assuming (Q1(x, y), · · · , Ql(x, y))
2 = 0, by smoothness there is a dotted lifting in:
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R/(Q1(x, y), · · · , Ql(x, y)) Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn, Q1, · · · , Ql)

R

(x,y)

(x′,y′)

Let us prove that Q(x, y) = 0. Indeed we have (x, y) ∼1 (x′, y′) so that we have:

P (x, y) = P (x′, y′) +

(
∂P

∂X

)

x′,y′

(x− x′) +

(
∂P

∂Y

)

x′,y′

(y − y′)

Q(x, y) = Q(x′, y′) +

(
∂Q

∂X

)

x′,y′

(x− x′) +

(
∂Q

∂Y

)

x′,y′

(y − y′)

Then we have P (x, y) = 0, P (x′, y′) = 0 and Q(x′, y′) = 0. From the first equality we get:

x− x′ = −

(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)

x′,y′

(y − y′)

so that from the second we get:

Q(x, y) = −

(
∂Q

∂X

)

x′,y′

(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)

x′,y′

(y − y′) +

(
∂Q

∂Y

)

x′,y′

(y − y′)

so that Q(x, y) = 0 as we have seen previously that:

(
∂Q

∂Y

)

x′,y′

=

(
∂Q

∂X

)

x′,y′

(
∂P

∂X

)−1

x′,y′

(
∂P

∂Y

)

x′,y′

From the decidability ofQ(x, y) = 0 we get thatX is an open in Spec(R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn)
so it is of the form D(G1, · · · , Gn), and we have an open cover of our scheme by pieces of the form:

Spec((R[X1, · · · , Xn, Y1, · · · , Yk]/P1, · · · , Pn)G)

Where Pi(x) = 0 for all i and G(x) 6= 0 implies:

det(Jac(P1, · · · , Pn)x) 6= 0

Then such a piece is equivalent to Spec
(
R[X1, · · · , Xn, Xn+1, Y1, · · · , Yk]/P1, · · · , Pn, GXn+1− 1

)
which

is standard smooth as:

det(Jac(P1, · · · , Pn, GXn+1 − 1)) = det(Jac(P1, · · · , Pn) ·G

which is invertible. �

Corollary 4.4.2 A scheme is formally étale if and only if it has a cover by standard étale schemes.

Proof By Corollary 3.1.2 we know that a scheme is formally étale if and only if it is smooth of dimension
0. Then we just apply Proposition 4.4.1. �
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Appendix

Rank of matrices

Definition .0.3 A matrix is said to have rank ≤ n if all its n+1-minors are zero. It is said to have rank
n if it has rank ≤ n and does not have rank ≤ n− 1.

Having a rank is a property of matrices, as a rank function defined on all matrices would allow to e.g.
decide if an r : R is invertible.

Lemma .0.4 Assume given a matrix M of rank n decomposed into blocks:

M =

(
P Q
R S

)

Such that P is square of size n and invertible. Then we have:

S = RP−1Q

Proof By columns manipulation the matrix is equivalent to:

M =

(
P Q
0 S −RP−1Q

)

but equivalent matrices have the same rank so S = RP−1Q. �

Lemma .0.5 If a linear map Rm → Rn given by multiplication with M has finite free kernel of rank k,
then M has rank m− k.

Proof Let a1, . . . , ak be a basis for the kernel of M in Rm, which we complete into a basis of Rm via
bk+1, . . . , bm. By completing Mbk+1, . . . ,Mbm to a basis of Rn, we get a basis where M is written as:

(
Im−k 0
0 0

)

so that M has rank m− k. �
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