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Introduction

François Châtelet introduced the notion of Severi-Brauer variety in his 1944 PhD thesis [2]. One mo-
tivation is to provide a generalisation of the well-known result that a conic which has a rational point
is isomorphic to P1(k). He defines a Severi-Brauer variety to be a variety which becomes isomorphic to
some Pn(k) after a separable extension. After recalling the characterisation of a central simple algebra
over a field k, as an algebra which becomes isomorphic to a matrix algebra Mn(k) after a separable
extension, he notices the fundamental fact that, Pn(k) and Mn+1(k) have the same automorphism group
PGLn+1(k). He uses then this to describe a correspondence between Severi-Brauer varieties and central
simple algebras, and as a corollary obtains the following generalisation of Poincaré’s result: a Severi-
Brauer variety which has a rational point is isomorphic to some Pn(k). This result and its proof are
described in Serre’s book on local fields [13]. (The paper [5] and the book [7] also contain a description
of this result.)

The notion of central simple algebra over a field has been generalised to the notion of Azumaya algebra
[1], and Grothendieck [8] generalized the notion of Severi-Brauer over over an arbitrary commutative
ring. The goal of this note is to present a formulation and proof of Châtelet’s Theorem over an arbitrary
commutative ring in the setting of synthetic algebraic geometry [3], using the results already proved
about projective space [4] in this context, in particular the fact that any automorphism of the projective
space is given by a homography. We also rely essentially on basic results about dependent type theory
with univalence [10] and modalities [12], in particular the fact that, in this context, étale sheafification
can be described as modalities. The formulation of Châtelet’s Theorem becomes that for X a scheme,
we have that:

∥X = Pn∥T → ∥X∥ → ∥X = Pn∥

where:
∥X = Pn∥T

is the localisation of ∥X = Pn∥ for a modality T satisfying some basic properties (valid for the modality
corresponding to étale sheafification).

1 Étale sheaves

1.1 Affine schemes are étale sheaves

Monic unramifiable polynomials are defined in [14] and analysed in [6]. If P is a proposition, we say that
A is P -local if, and only if, the canonical map A→ AP is an equivalence. Given a family of propositions
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Pi, the types that are Pi-local for all i form a model of type theory with univalence, and we have an
associated lex modality, the nullification modality [12, 11]. Following [14], we can consider the étale
modality, which corresponds to the family of propositions ∥Spec(R[X]/g)∥, for g monic unramifiable.

Definition 1.1. A type X is called an étale sheaf if for all g : R[X] monic unramifiable, we have that
X is ∥Spec(R[X]/g)∥-local.

Remark 1.2. By [14] this should agree with the usual étale topology. It should also be noted that we will
never use the unramifiability assumption, so we could just use non-constant monic polynomials instead.

Lemma 1.1. The type R is an étale sheaf.

Proof. Let g : R[X] be monic and write S = Spec(R[X]/g). We have a coequaliser in sets:

S × S ⇒ S → ∥S∥

So since R is a set we have an equaliser diagram:

R∥S∥ → RS ⇒ RS×S

so that it is enough to prove that R is the equaliser of:

R[X]/g ⇒ R[X]/g ⊗R[X]/g

to conclude. But since g is monic we merely have:

R[X]/g ≃ Rn

and it is clear that R is the equaliser of:

Rn ⇒ Rn ⊗Rn

Remark 1.3. If R is modal, then so is Hom(A,R) for any R-algebra A by general reasoning on modal-
ities, so that every affine scheme is modal. By duality this implies that every finitely presented algebra
is modal.

1.2 Schemes are étale sheaves

Lemma 1.2. Assume given a proposition P such that:

• The type R is P -local.

• Any open proposition is P -local.

• The type of open propositions is P -local.

Then any scheme is P -local.

Proof. Since R is P -local, all affine schemes are P -local as explained in Theorem 1.3.
We check that for all scheme X, any map:

f : P → X

merely factors through 1. Take (Ui)i:I a finite cover of X by affine scheme. Then for any i : I we have
that f−1(Ui) is an in P , so since the type of open is P -local, we merely have an open proposition Vi such
that for all x : P , we have:

(x ∈ f−1(Ui)) ↔ Vi

Since the f−1(Ui) cover P , we have that:
P → ∨i:IVi
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But open propositions are assumed to be P -local, so we have that:

∨i:IVi

Assume k : I such that Vk holds. Then f−1(Uk) = P and the map f factors through the affine scheme
Uk. Since affine schemes are P -local, we merely have a lift for f .

Now we conclude that any scheme is P -local by proving that its identity types are P -local. Indeed
they are schemes, so the previous point implies they are P -local.

We will use freely the terminology and results of [3]; in particular a proposition is open if, and only
if, it is equivalent to a proposition of the form r1 ̸= 0 ∨ · · · ∨ rm ̸= 0 for some r1, . . . , rm in R.

Lemma 1.3. If g is a monic polynomial, and h1, . . . , hm in R[X], then the proposition ∀xg(x) = 0 →
h1(x) ̸= 0 ∨ · · · ∨ hm(x) ̸= 0 is open. It follows that, for any monic g : R[X], and for any open U in
Spec(R[X]/g) the proposition: ∏

x:Spec(R[X]/g)

U(x)

is open.

Proof. This follows from IV-10-2 in [9].

Proposition 1.1. Any scheme is an étale sheaf.

Proof. Assume given g : R[X] monic, we can apply Lemma 1.2 because:

• The type R is an étale sheaf by Lemma 1.1.

• Any open proposition U is an étale sheaf because if:

∥Spec(R[X]/g)∥ → U

then since ¬¬Spec(R[X]/g) we have ¬¬U , which implies U .

• Since open propositions are étale sheaves, it is enough that any map:

∥Spec(R[X]/g)∥ → Open

merely factors through 1. But given a constant open U in Spec(R[X]/g), for any x : Spec(R[X]/g)
we have that:

x ∈ U ↔
∏

y:Spec(R[X]/g)

y ∈ U)

The right hand side is open by Lemma 1.3, giving the required lift.

1.3 Descent for finite free modules

Lemma 1.4. If we have Mx a finitely presented (resp. finite projective) R-module depending on x :
Spec(A), then

∏
x:Spec(A)Mx is a finitely presented (resp. finite projective) A-module.

Proof. See Theorem 7.2.3 in [3].

Lemma 1.5. Let M be a module that is an étale sheaf such that we have the étale sheafification of ”M
is f.p.”, then for any monic g we have that:

R[X]/g ⊗M ≃MSpec(R[X]/g)
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Proof. We have that R[X]/g ⊗M is merely equal to Mn where n is the degree of g, therefore it is an
étale sheaf. As MSpec(R[X]/g) is an étale sheaf as well, so when proving that:

R[X]/g ⊗M →MSpec(R[X]/g)

is an equivalence, we can assume thatM is finitely presented. In this case we conclude by Theorem 7.2.3
in [3].

Lemma 1.6. Let A be an fppf algebra and let M be an R-module. Then if A ⊗M is f.p. (resp. finite
projective) as an A-module if and only if M is f.p. (resp. finite projective) as an R-module.

Proof. See VIII.6.7 in [9].

Proposition 1.2. For M a module that is an étale sheaf, the proposition ”M is an finite free” is itself
an étale sheaf.

Proof. Follows from Lemmas 1.5 and 1.6.

2 Azumaya algebras and their associated Severi-Brauer variety

From now on we assume a lex modality T such that:

• Schemes are modal.

• If M is a T -modal R-module, then the proposition of M being finite free is modal.

We call T -modal types sheaves and we write ∥X∥T the sheafification of the propositional truncation of
X. Note that T -modal types form a model of homotopy type theory [12, 11].

In Section 1 we constructed such a modality (Proposition 1.1 and Proposition 1.2).
We fix a natural number n throughout.

2.1 The type AZn of Azumaya algebras

Definition 2.1. An Azumaya algebra of rank n is a (non-commutative, unital) R-algebra A such that
its underlying type is a sheaf and:

∥A =Mn+1(R)∥T
We write AZn for the type of Azumaya algebra of rank n.

Remark 2.2. In [6], we give a constructive proof that a R-algebra A is an Azumaya algebra of rank n
if, and only if, A is free as a R-module of rank (n+ 1)2 and the canonical map A⊗ Aop → EndR(A) is
an isomorphism.

Lemma 2.1. For all A : AZn we have that A is finite free as a module.

Proof. By hypothesis A being finite free is modal so that ∥A =Mn+1(R)∥T implies A finite free.

Definition 2.3. Let V be a free R-module, we define Grk(V ) the k-Grassmannian of V as the type of
k-dimensional subspaces of V .

Lemma 2.2. Let V be a finite free module, then Grk(V ) is a scheme.

Proof. We can assume V = Rn. The type of k-dimensional subspaces of Rn is the type of n×k matrices
of rank k quotiented by the natural action of GLk. For all k×k minor, we consider the open proposition
stating this minor is non-zero, which well defined as it is invariant under the GLk-action. This gives a
finite open cover of Grk(R

n).
Let us show any piece is affine. For example consider the piece of matrices of the form:(

P N
)

where P is invertible of size k × k. Any orbit in this piece has a unique element of the form:(
Ik N ′)

where Ik is the identity matrix, so this piece is equivalent to R(n−k)k.
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Lemma 2.3. For all A : AZn and I : Grn+1(A), we have that I being a right ideal in A is a closed
proposition.

Proof. By Lemma 2.1 we have that A is finite free as a module. Consider a0, · · · , an a basis of I and
extend it to a basis of A adding b1, · · · , bl. We can proceed as if R was a field because a non zero vector
has a non-zero coefficient [3].

For any a : A, we have that a ∈ I is a closed proposition as it says that the b1, · · · , bl coordinates of
a are zero.

Then I is an ideal if and only if for any a in the chosen basis of A and any i in the chosen basis of I
we have that ai ∈ I, which is a closed proposition.

Lemma 2.4. For all A : AZn we define:

RI(A) := {I : Grn+1(A) | I is a right ideal}

Then RI(A) is a scheme.

Proof. By Lemma 2.1 we have that A is finite free as a module, so that by Lemma 2.2 we have that
Grn+1(A) is a scheme, and then by Lemma 2.3 we have that RI(A) is closed in a scheme, so it is a
scheme.

2.2 Quaternion algebras are Azumaya algebras

In this section we assume 2 ̸= 0, and we take T to be the étale sheafification.

Definition 2.4. Given a, b : R×, we define the quaternion algebra Q(a, b) as the non-commutative
algebra:

R[i, j]/(i2 = a, j2 = b, ij = −ji)

Remark 2.5. As a vector space, Q(a, b) is of dimension 4, generated by 1, i, j, ij.

Remark 2.6. By the change of variable i 7→ j and j 7→ i we get Q(a, b) = Q(b, a).

Lemma 2.5. For all b : R×, we have that Q(1, b) =M2(R).

Proof. We send i to:

I =

(
1 0
0 −1

)
and j to:

J =

(
0 b
1 0

)
Then IJ is:

K =

(
0 b
−1 0

)
It is easy to check this define an algebra morphism, and since 1, I, J,K form a basis of M2(R) the map
is an isomorphism.

Lemma 2.6. For all a, b, u, v : R×, we have that Q(a, b) = Q(u2a, v2b).

Proof. We use the variable change i 7→ ui and j 7→ vj.

Lemma 2.7. Given a, b : R×, we have that Q(a, b) is an Azumaya algebra.

Proof. We have that Q(a, b) is finite free as a vector space so it is a sheaf. So Q(a, b) being Azumaya

is a sheaf and we can assume
√
a. Then by Lemma 2.6 we have Q(1, b) = Q(

√
a
2
, b) = Q(a, b) and we

conclude by Lemma 2.5.

5



2.3 A remark on Azumaya algebras

Lemma 2.8. For any n : N, the map:

Mn+1(R)⊗Mn+1(R)
op → EndR(Mn+1(R))

M ⊗N 7→ (P 7→MPN)

is an equivalence.

Proof. Let us denote by (Ei,j)0≤i,j≤n the canonical basis of Mn+1(R). We consider the basis:

(Ei,j ⊗ Ek,l)0≤i,j,k,l≤n

of Mn+1(R)⊗Mn+1(R)
op, as well as the basis:

(Ci,j,k,l)0≤i,j,k,l≤n

of EndR(Mn+1(R)) where Ci,j,k,l(Ej,k) = Ei,l and Ci,j,k,l is null on other element of the basis. It is clear
that the morphism sends one basis to the other, and that both algebras have the same multiplication
table.

Lemma 2.9. Assume A : AZn, then A is finite free as a module and the map A ⊗ Aop → EndR(A)
sending a⊗ b to c 7→ acb is an equivalence.

Proof. The fact that A is finite free is Lemma 2.1. Then both A ⊗ Aop and EndR(A) are finite free
modules and therefore are T -modal, so that the map being an equivalence is T -modal and when proving
it we can assume A =Mn+1(R). Then we conclude by Lemma 2.8.

2.4 The type SBn of Severi-Brauer varieties

Definition 2.7. A type X is called a Severi-Brauer variety of dimension n if X is a sheaf and:

∥X = Pn∥T

We write SBn the type of Severi-Brauer varieties of dimension n. We will see later that every Severi-
Brauer variety is a scheme.

Lemma 2.10. Consider the map:
δ : Pn → RI(Mn+1(R))

sending (x0 : · · · : xn) : Pn to:

{M :Mn(R) | ∀i, j. xi ·Mj = xj ·Mi}

where Mi is the i-th line of M . Then δ is an equivalence.

Proof. Write X = (x0 : · · · : xn). First we check δ is well defined. It is clear that for all λ ̸= 0 we have
that:

δ(λX) = δ(X)

and that δ(X) is a right ideal. To check the dimension assume xk ̸= 0. Then M ∈ δ(X) if and only if
for all i we have that Mi =

xi

xk
Mk, which means giving M ∈ δ(X) is equivalent to giving Mk in Rn+1,

so δ(X) is free of dimension n+ 1.
Next we check injectivity. Assume given (x0 : · · · : xn) and (y0 : · · · : yn) in Pn such that for all

M :Mn(R) we have:
(∀i, j. xi ·Mj = xj ·Mi) ↔ (∀i, j. yi ·Mj = yj ·Mi)

In particular considering the matrix N such that Nj = (yj , · · · , yj) we get that:

∀i, j. xiyj = xjyi
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so that:
(x0 : · · · : xn) = (y0 : · · · : yn)

Finally we check surjectivity. Assume I : RI(Mn+1(R)), since ∥I = Rn+1∥ we have M ∈ I such that
M ̸= 0, for example assume M0,0 ̸= 0. Then for all k we have that:

ME0,k ∈ I

meaning that we have Nk ∈ I where:
Nk

i,k =Mi,0

and when when j ̸= k
Nk

i,j = 0

Then since M0,0 ̸= 0 the matrices Nk are linearly independent and since I has dimension n + 1, it is
precisely the ideal spanned by the Nk. But this ideal is δ(M0,0 : · · · :Mn,0).

Lemma 2.11. If A is an Azumaya algebra, then RI(A) is a Severi-Brauer variety.

Proof. By Lemma 2.4 and the assumption that schemes are sheaves, we have that RI(A) is a sheaf. Then
to prove:

∥A =Mn+1(R)∥T → ∥RI(A) = Pn∥T
it is enough to prove:

RI(Mn+1(R)) = Pn

which is Lemma 2.10.

2.5 Conics are Severi-Brauer varieties

In this section we assume 2 ̸= 0, and we take T to be the étale sheafification.

Definition 2.8. Given a, b : R×, we define the conic C(a, b) as the set of [x : y : z] : P2 such that
x2 = ay2 + bz2.

Lemma 2.12. Assume a, b : R× such that ∥C(a, b)∥, then ∥C(a, b) = P1∥.

Proof. Let us assume x0, y0, z0 such that x20 = ay20 + bz20 . We can assume x0 ̸= 0 by possibly considering
C(a, b) = C( 1a ,−

b
a ). Then we can clearly assume x0 = 1 without loss of generality, so that ay0+ bz0 = 1.

Let us consider the map:
ψ : P1 → P2

[u : v] 7→ [au2 + bv2 : y0(au
2 − bv2) + 2buvz0 : z0(au

2 − bv2)− 2auvy0]

We want to define ϕ inverse to ϕ. Assume [x : y : z] : P2 such that x2 = ay2 + bz2.
Let us proof that either x + ay0y + bz0z or x − ay0y − bz0z is invertible, to do this it is enough to

prove that either x or ay0y + bz0z is invertible. Assume x = 0 and ay0y + bz0z = 0, then we have a

contradiction. Indeed y or z is invertible and ay2 + bz2 = 0, so that y and z are invertible and b = −ay2

z2

and y0z = yz0. Moreover y0 or z0 is invertible, so that both y0 and z0 are invertible and y
z = y0

z0
which

means ay2 + bz2 = 0 implies ay20 + bz20 = 0, a contradiction.

If x+ ay0y + bz0z is invertible we define ϕ([x, y, z]) = [1 : a(z0y−y0z)
x+ay0y+bz0z

].

If x− ay0y − bz0z is invertible we define ϕ([x, y, z]) = [ b(z0y−y0z)
x−ay0y−bz0z

: 1].
This is well defined as if both are invertible then:

b(z0y − y0z)

x− ay0y − bz0z
× a(z0y − y0z)

x+ ay0y + bz0z
=

ab(z0y − y0z)
2

x2 − (ay0y + bz0z)2
= 1

because:

x2 − (ay0y + bz0z)
2 = (ay2 + bz2)(ay20 + bz20)− (ay0y + bz0z)

2 = ab(z0y − y0z)
2

We omit the verification that this ϕ is indeed an inverse to ψ.
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Lemma 2.13. Assume given b : R×, then ∥C(1, b) = P1∥.

Proof. We just apply Lemma 2.12 to the point [1, 1, 0] : C(1, b).

Lemma 2.14. Given a, b, u, v : R× we have that C(a, b) = C(u2a, v2b).

Proof. Consider the change of variable y 7→ uy and z 7→ vz.

Lemma 2.15. Assume given a, b : R×, then C(a, b) is a Severi-Brauer variety.

Proof. Since a sheaf being a Severi-Brauer variety is an étale sheaf, we can assume
√
a . Then by

Lemma 2.14 we have that C(1, b) = C(
√
a
2
, b) = C(a, b) and we conclude by Lemma 2.13.

Remark 2.9. We will see in Theorem 3.4 that any merely inhabited Severi-Brauer variety is a projective
space.

3 The equivalence AZn ≃ SBn and Châtelet’s Theorem

3.1 Generalities on delooping in T -sheaves

Definition 3.1. A type A is T -connected if:

∀(x, y : A). ∥x = y∥T

The key intuition for the next lemma is that both A and B are deloopings of the same group in the
topos of sheaves.

Lemma 3.1. Assume A,B pointed T -connected sheaves. Let f : A → B be a pointed map inducing an
equivalence:

Ωf : ΩA ≃ ΩB

Then f is an equivalence.

Proof. First we prove that f is an embedding. We have to prove that for all x, y : A the map:

apf : x = y → f(x) = f(y)

is an equivalence. Since A and B are sheaves so are their identity types, so apf being an equivalence is
a sheaf, so by T -connectedness of A we can assume x and y are the basepoint, in which case it is part of
the hypothesis.

Now we prove it is surjective, indeed for any x : B we have that fibf (x) is a sheaf and a proposition
so when proving it is inhabited we can assume x is the basepoint of B and give the basepoint of A as
antecedent.

3.2 Both Aut(Mn+1(R)) and Aut(Pn) are PGLn+1(R)

We need an well-known algebra result.

Lemma 3.2. Let M be a finite projective module, then M is finite free.

Proof. This is IX.2.2 in [9], it crucially relies on R being local.

Lemma 3.3. Assume ei,j :Mn+1(R) for 0 ≤ i, j ≤ n such that:

ei,jek,l = δj,kei,l

where δj,k = 1 if j = k and 0 otherwise. Moreover assume:

e0,0 + · · ·+ en,n = 1

Then there exists P : GLn+1(R) such that:

ei,j = PEi,jP
−1
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Proof. We define ei = ei,i, then e0 + · · ·+ en = 1, for all i we have e2i = ei and for all i ̸= j we have that
eiej = 0. From this we get:

Rn+1 = V0 ⊕ · · · ⊕ Vn

where:
Vi = {x | ei(x) = x}

and:
ei,j : Vj ≃ Vi

As a direct summand of a free module we have that V0 is projective, and since V0 = e0(R
n+1) we

have that V0 is finitely generated, so by Lemma 3.2 it is finite free. From V n+1
0 = Rn+1 we get that

∥V0 = R∥, and therefore that ∥Vi = R∥ for all i.
Then we choose v0 generating V0 and define vi = ei,0(v0) so that vi generates Vi because ei,0 : V0 ≃ Vi.

We get a basis v0, · · · , vn of Rn+1.
Let u0, · · · , un be the canonical basis of Rn+1 and define P : GLn+1(R) by sending ui to vi. Then

for all vk we have that:
ei,jvk = PEi,jP

−1vk

so we can conclude.

Proposition 3.1. The map:
α : PGLn+1(R) → Aut(Mn+1(R))

P 7→ (M 7→ PMP−1)

is an equivalence.

Proof. It is clearly a group morphism.
For injectivity we just need to check that if for all M : Mn+1(R) we have PMP−1 = M then there

exists λ ̸= 0 such that P = λIn+1. We deduce this from Pei,j = ei,jP and P invertible.
For surjectivity consider ei,j = σ(Ei,j), we can apply Lemma 3.3 to get P : GLn+1(R) such that:

σ(Ei,j) = PEi,jP
−1

from which we conclude that for all M :Mn+1(R) we have that:

σ(M) = PMP−1

as desired.

Proposition 3.2. The map:
β : PGLn+1(R) → Aut(Pn)

X 7→ PX

is an equivalence.

Proof. This is the main result from [4].

3.3 The Severi-Brauer construction is an equivalence

Proposition 3.3. The map:
RI : AZn → SBn

is an equivalence.

Proof. By Lemma 3.1 it is enough to prove that the top map in the triangle:

Aut(Mn(R)) Aut(Pn)

PGLn+1(R)

ΩRI

βα
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is an equivalence. But since the two other maps in the triangle are equivalences by Proposition 3.1 and
Proposition 3.2, it is enough to prove that the triangle commutes. To do this we need to check that for
all P : PGLn+1(R) we have that:

δ−1 ◦ apRI(α(P )) ◦ δ = β(P )

in Aut(Pn), with δ defined in Lemma 2.10. So we need to prove the following square commutes:

RI(Mn+1(R)) RI(Mn+1(R))

Pn Pn

I 7→PIP−1

δ

X 7→PX

δ

where apRI was computed using path induction.
We see that:

δ(Y ) = {M :Mn(R) | ∀A,B : Rn+1. AtX ·BtM = BtX ·AtM}

To check that:
Pδ(X)P−1 = δ(PX)

we just need to check an inclusion as both are finite free modules of the same dimension. Assume
M ∈ δ(X), to check that PMP−1 ∈ δ(PX) we need to check that for all A,B : Rn+1 we have that:

AtPX ·BtPMP−1 = BtX ·AtPMP−1

but since M ∈ δ(X) we have that:

(P tA)tX · (P tB)tM = (P tB)tX · (P tA)tM

which gives us what we want.

Remark 3.2. By Lemma 2.4 and Proposition 3.3 we can conclude than any Severi-Brauer variety is a
scheme. This was not clear a priori because being a scheme is not modal.

Remark 3.3. By Proposition 3.3 and Theorem 2.2 and we can conclude that a type X being a Severi-
Brauer variety for any modality T such that:

• Schemes are T -modal.

• The type of finite free modules is T -modal.

• T -modal types are étale sheaves.

is equivalent to X being a Severi-Brauer variety for the étale topology. In particular Severi-Brauer
varieties do not depend on the choice of such a T .

3.4 Châtelet’s Theorem

Lemma 3.4. Assume A : AZn with I : RI(A), then:

A = EndR(I)
op

Proof. Since I is an ideal, there is a canonical map of algebra:

A→ EndR(I)
op

Since both algebras are sheaves (indeed ∥I = Rn+1∥ implies I is a sheaf), this map being an equivalence
is a sheaf so we can assume A =Mn+1(R).

By Lemma 2.10 we can assume X = (x0 : · · · : xn) : Pn such that I = δ(X). There is a k such that
xk ̸= 0, so we can assume xk = 1, then we have an isomorphism:

θ : Rn+1 → I

sending Y : Rn+1 to the matrix M with its i-th line Mi = xiY . Then for all M : Mn(R) we have a
commutative square:
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I I

Rn+1 Rn+1

N 7→NM

θ

X 7→MtX

θ

meaning the natural map:
Mn+1(R) → EndR(I)

op

sends M to δ−1 ◦M ◦ δ, so it is an equivalence.

Theorem 3.4 (Châtelet’s Theorem). Assume X : SBn, then:

∥X∥ → ∥X = Pn∥

Proof. By Proposition 3.3 we can assume X = RI(A) for some A : AZn. Then we can assume I : RI(A),
so that by Lemma 3.4 we have that:

A = EndR(I)
op

Since we merely have that I = Rn+1, we merely have:

A =Mn+1(R)
op =Mn+1(R)

Applying Lemma 2.10 we merely conclude:

X = RI(A) = RI(Mn+1(R)) = Pn
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