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Abstract—We construct a model of type theory enjoying
parametricity from an arbitrary one. A type in the new model is
a semi-cubical type in the old one, illustrating the correspondence
between parametricity and cubes.

Our construction works not only for parametricity, but also
for similar interpretations of type theory and in fact similar
interpretations of any generalized algebraic theory. To be precise
we consider a functor forgetting unary operations and equations
defining them recursively in a generalized algebraic theory. We
show that it has a right adjoint.

We use techniques from locally presentable category theory,
as well as from quotient inductive-inductive types.
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I. OVERVIEW

A. Introduction to type theory

Martin Löf type theory [1] is a foundational system for
constructive mathematics. Most modern proof assistants (for
example Agda, Coq, Lean) are based on variants of this
system.

In this paper we use a semantical approach: we study models
of type theory rather than type theory itself. Such a model
supplies suitable notions of types (corresponding to sets and

properties) and terms inhabiting them (corresponding to ele-
ments of sets and proofs of propositions). It can be intuitively
conceived as a world where (constructive) mathematics can
take place. We give two basic models:
• The set model is the traditional mathematical world.
• The initial model is inhabited by the elements definable

from the syntax of type theory. Its elements and identifi-
cations are precisely the ones which can be derived from
the axioms of type theory.

Proof assistants implement the initial model. This makes
possible a rich interaction between models of type theory and
proof assistants, mainly using two principles:
• On the one hand a given model has features absent from

the initial one. They can suggest extensions for a proof
assistant.

• On the other hand a term in the initial model can be
interpreted in any model. So a formal proof gives a
multitude of theorems, one for each model.

The abundance of models for type theory makes this approach
fruitful. We give an example for each principle.

Perhaps the most striking use of the first principle comes
from the Kan cubical set model given in [2]. This model was
used to design cubical type theory [3], which is now imple-
mented as Cubical Agda [4]. This proof assistant based on
Agda supports (among other features) the axiom of univalence,
implying that isomorphic types are equal. This axiom has
applications in computer science, where it allows to transport
programs along isomorphisms, and in higher mathematics (that
is mathematics with everything considered up to homotopy).

Now we give an example for the second principle. Schreier
theory classifies group extensions. It can be proven in type
theory with univalence using an alternative definition of groups
as pointed connected types (a sketch is given by David Myers
at http://davidjaz.com/Talks/DJM HoTT2020.pdf). But type
theory with univalence can be interpreted in any higher topos
[5], so we get a higher Schreier theory classifying group
extensions in higher topoi. But the type-theoretic proof is
significantly easier than the usual proof for regular Schreier
theory, let alone a higher version! The canonical introduction
to such synthetic homotopy theory using univalence is called
the HoTT book [6].

B. Parametricity and cubical structure
Now we introduce a fundamental tool of type theory called

parametricity. Originally designed for system F [7], a general-
ization to type theory can be found in [8]. From our semantical978-1-6654-4895-6/21/$31.00 c©2021 IEEE
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point of view, parametricity consists of some operations ∗

defined recursively in the initial model. Using these operations
we can extract Theorems for free! [9] for polymorphic terms
in the initial model (that is terms taking a type as input). For
example given any term t in the initial model of the same type
as the polymorphic identity, the term t∗ proves that t behaves
as the polymorphic identity. Parametricity can be summarized
by saying that for any term t in the initial model, t∗ proves
that t preserves relations.

We define a parametric model as a model of type theory
together with operations ∗ showing that terms in this model
preserve relations. The main goal of this article is to construct
a parametric model from an arbitrary one.

Now we introduce the seemingly unrelated semi-cubical
sets. A semi-cubical set consists of a set of points together
with:
• For any two points, a set of paths between them.
• For any four points and four paths drawing a square, a

set of surfaces having this square as border.
• And so on in higher dimensions (cubes, hypercubes...).

The geometric intuition should be clear from our vocabulary.
A cubical set is a semi-cubical set with degeneracies, meaning
constant paths, constant surfaces, etc.

It is known that there is a strong connection between
cubical structures and parametricity. In [10] a model for non-
iterated parametricity (i.e. parametricity where ∗ can only
be applied once) by 1-truncated cubical sets (i.e. reflexive
graphs) is given. In [11] a model for the so-called proof-
relevant parametricity (where ∗ can be applied twice) is given
using 2-truncated semi-cubical sets. Alternatively [12] gives a
general, foundation-agnostic, definition of a model for non-
iterated parametricity in system F using reflexive graphs, and
[13] extends this to full parametricity using cubical structures.

Moreover it is known that cubical structures arise when
trying to internalize parametricity in type theory. For example
[14] gives a model for (the unary variant of) parametricity
in (the unary variant of) cubical sets, and [15] shows how
parametricity can be internalized orthogonally to univalence,
using very similar cubical techniques for both features.

In this paper we will show how semi-cubical structures arise
already from iterated parametricity without internalization, and
can be used to construct a parametric model from any given
model.

C. Content of this paper

We use the language of categories. There is a functor from
parametric models to arbitrary models, which forgets the unary
operations ∗. This forgetful functor has a poorly behaved left
adjoint freely adding parametricity, sending non-parametric
models to trivial ones. In this paper we show this forgetful
functor also has a better-behaved right adjoint. We will see
that this right adjoint sends a model C to the model of semi-
cubical types in C. For example it sends the set model to the
semi-cubical set model. Moreover we will see that our method
for constructing this right adjoint does not use much features
of parametricity. From these two facts a picture emerges: from

an interpretation of type theory (for example parametricity),
we get:

• A notion of structure on types (for example semi-cubical
types).

• Models for this interpretation by types with this structure
(for example semi-cubical models for parametricity).

Recall there is a link between cubical structure and internal
parametricity. In fact we pursue the idea that univalence is
a variant of parametricity, and that we have a similar link
between Kan cubical structure and univalence. This is already
evoked in [16] which introduces a syntax for a univalent type
theory inspired by parametricity but does not prove univa-
lence, and in [17] which unifies parametricity and univalence,
although assuming a univalent universe to begin with. To
summarize we conjecture a table:

Interpretation Structure
External parametricity Semi-cubical types
Internal parametricity Cubical types
External univalence Kan semi-cubical types
Internal univalence Kan cubical types

In this paper we give the procedure supposedly linking the
two columns, and study the first line in detail. It is organized
as follows:

• In Section II we define parametricity for models of
type theory. Then we give a general definition of an
interpretation, give toy examples, and prove that para-
metricity is an interpretation. It should be noted that we
use unary parametricity (which can also be seen as a
form of realizability as first noted in [18]) for notational
convenience, so we obtain something a bit different from
semi-cubes. But our approach can be extended to binary
parametricity and semi-cubes straightforwardly.

• In Section III we give general conditions implying the
existence of right adjoints to forgetful functors for ex-
tensions of generalized algebraic theories. To do this
we use locally presentable categories, which generalize
categories of models for an algebraic theory. The standard
textbook is [19]. This short section contains only well-
known material, but we include it anyway because the
intended audience for this paper might not be familiar
with it.

• In Section IV we prove our main result, constructing a
right adjoint from any interpretation. We examine this
adjoint for our toy examples of interpretation to help build
intuition, and then for parametricity to see it constructs
semi-cubical models.

Remark 1. Three very similar syntactic notions can be used
as a basis for the general definition of an interpretation.

• Essentially algebraic theories, giving rise to locally pre-
sentable categories [19].

• Generalized algebraic theories, allowing dependencies
[20].
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• Signatures for quotient inductive-inductive types, where
there is a built-in strong induction principle for initial
objects [21].

Technically we define interpretations using generalized alge-
braic theories, but we freely use the most convenient of these
three notions throughout this paper, as they are intuitively
equivalent. This should not be interpreted as a claim that these
three notions are equivalent in a technical sense, as we do not
know any satisfying reference for this, and it is out of scope
to prove it here. However our main example (parametricity as
an interpretation of type theory) can indeed be defined using
any of these three syntactic notions.

II. PARAMETRICITY AS AN INTERPRETATION

A. Models of type theory

We define a model of type theory as a CwF (Category with
Families [22]), so they are algebras for a GAT (Generalized
Algebraic Theory in Cartmell’s sense [20]). We follow the
presentation in [23], which explains how such a GAT can be
seen as a signature for a QIIT (Quotient Inductive-Inductive
Type). Indeed the induction principle for the initial model of
type theory seen as a QIIT will be crucial in our construction.

First we define CwFs. In this definition Ctx stands for
contexts, Ty for types, Sub for substitutions and Tm for terms.
We use type-theoretic notations, so a set-minded reader should
replace x:A by x ∈ A and p q by p(q). Moreover any variable
appearing undeclared is in fact universally quantified. We use
Agda notations, meaning we use:

(x :A)→ B(x) (1)

for what is usually denoted ∀x :A,B(x) or Π(x :A).B(x).

Definition 2. A CwF consists of:

Ctx : Set (2)
Ty : Ctx→ Set (3)

Sub : Ctx→ Ctx→ Set (4)
Tm : (Γ : Ctx)→ Ty Γ→ Set (5)

With constructors for contexts:

· : Ctx (6)
( , ) : (Γ : Ctx)→ Ty Γ→ Ctx (7)

types:

[ ] : Ty ∆→ Sub Γ ∆→ Ty Γ (8)

substitutions:

◦ : Sub ∆ Θ→ Sub Γ ∆→ Sub Γ Θ (9)
id : Sub Γ Γ (10)
ε : Sub Γ · (11)

( , ) : (δ : Sub Γ ∆)→ Tm Γ (A[δ])

→ Sub Γ (∆, A) (12)
π1 : Sub Γ (∆, A)→ Sub Γ ∆ (13)

and terms:

[ ] : Tm ∆ A→ (δ : Sub Γ ∆)

→ Tm Γ (A[δ]) (14)
π2 : (σ : Sub Γ (∆, A))→ Tm Γ (A[π1 σ]) (15)

with the following equations for types:

A[σ ◦ η] = A[σ][η] (16)
A[id] = A (17)

substitutions:

(σ ◦ ν) ◦ δ = σ ◦ (ν ◦ δ) (18)
id ◦ σ = σ (19)
σ ◦ id = σ (20)

σ = ε (21)
π1 (σ, t) = σ (22)

(π1 σ, π2 σ) = σ (23)
(σ, t) ◦ ν = (σ ◦ ν, t[ν]) (24)

and terms:

π2 (σ, t) = t (25)

Note that some equations in the definition need the previous
ones to be well-typed. CwFs are worlds where one can
substitute, so they are sometimes called models for the calculus
of substitutions. But not much can be done in an arbitrary CwF
since there is no way to construct types. We define additional
structures on a CwF, which will be assumed in a model of
type theory.

Now we introduce some useful notations where w stands
for weakening and v for the last variable.

Notation 3. We define for Γ : Ctx and A : Ty Γ.

w = π1 id : Sub (Γ, A) Γ (26)
v = π2 id : Tm (Γ, A) A[w] (27)

Using this notation we have that v[wn] is similar to the de
Bruijn index n, where wn is w ◦ · · · ◦w where w is composed
n times.

Definition 4. A unit for a CwF consists of:

> : Ty Γ (28)
tt : Tm Γ > (29)

such that for all x : Tm Γ > we have:

x = tt (30)

with equations for substitutions:

>[σ] = > (31)
tt[σ] = tt (32)
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Definition 5. Products for a CwF consist of:

Σ : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ (33)
.1 : Tm Γ (Σ A B)→ Tm Γ A (34)
.2 : (t : Tm Γ (Σ A B))→ Tm Γ B[id, t.1] (35)

( , ) : (t : Tm Γ A)→ Tm Γ B[id, t]

→ Tm Γ (Σ A B) (36)

such that we have:

(s, t).1 = s (37)
(s, t).2 = t (38)

(t.1, t.2) = t (39)

with equations for substitutions:

(Σ A B)[σ] = Σ A[σ] B[σ ◦ w, v] (40)
(s, t)[σ] = (s[σ], t[σ]) (41)

Remark 6. We call Σ A B a product because it specializes
to the cartesian product A × B when B does not depend on
A. Confusingly it is sometimes called a dependent sum.

Remark 7. The notation ( , ) is overloaded, as it can be
used for contexts, substitutions or terms.

Definition 8. Functions for a CwF consist of:

Π : (A : Ty Γ)→ Ty (Γ, A)→ Ty Γ (42)
app : Tm Γ (Π A B)→ Tm (Γ, A) B (43)
λ : Tm (Γ, A) B → Tm Γ (Π A B) (44)

such that we have:

app (λ t) = t (45)
λ (app t) = t (46)

with equations for substitutions:

(Π A B)[σ] = Π A[σ] B[σ ◦ w, v] (47)
(λ t)[σ] = λ (t[σ ◦ w, v]) (48)

Remark 9. The previous definitions imply:

(t.1)[σ] = t[σ].1 (49)
(t.2)[σ] = t[σ].2 (50)

(app t)[σ ◦ w, v] = app (t[σ]) (51)

So that there are no missing equations for substitutions.

Definition 10. A universe for a CwF consists of:

U : Ty Γ (52)
El : Tm Γ U → Ty Γ (53)
>U : Tm Γ U (54)
ΣU : (s : Tm Γ U)→ Tm (Γ,El s) U → Tm Γ U (55)
ΠU : (s : Tm Γ U)→ Tm (Γ,El s) U → Tm Γ U (56)

such that we have:

El >U = > (57)
El (ΣU s t) = Σ (El s) (El t) (58)
El (ΠU s t) = Π (El s) (El t) (59)

with equations for substitutions:

U [σ] = U (60)
(El t)[σ] = El (t[σ]) (61)
>U [σ] = >U (62)

(ΣU s t)[σ] = ΣU s[σ] t[σ ◦ w, v] (63)
(ΠU s t)[σ] = ΠU s[σ] t[σ ◦ w, v] (64)

Definition 11. A model of type theory is a CwF with a unit,
products, functions and a universe.

There exist many variants of type theory, with fewer or
more types. The most common extensions consist in adding
some inductive types (for example booleans, natural numbers,
identity types, W -types...) with sometimes a hierarchy of
universes and maybe a scheme for general inductive families.

Our abstract approach using an interpretation makes it easy
to check whether this article works for a given extension. It
certainly works for the common ones.

B. Parametric models

Now we define what it means for a model of type theory to
be parametric. We use unary parametricity, which can be seen
as a case of realizability.

Definition 12. A parametric model is a model of type theory
together with:

∗ : (Γ : Ctx)→ Ty Γ (65)
∗ : (A : Ty Γ)→ Ty (Γ,Γ∗, A[w]) (66)
∗ : (σ : Sub Γ ∆)→ Tm (Γ,Γ∗) ∆∗[σ ◦ w] (67)
∗ : (t : Tm Γ A)→ Tm (Γ,Γ∗) A∗[id, t[w]] (68)

Such that we have equations for substitutions:

·∗ = > (69)

(Γ, A)∗ = Σ Γ∗[w] A∗[w2, v, v[w]] (70)

(A[σ])∗ = A∗[σ ◦ w2, σ∗[w], v] (71)
(σ ◦ ν)∗ = σ∗[ν ◦ w, ν∗] (72)

id∗ = v (73)
ε∗ = tt (74)

(σ, t)∗ = (σ∗, t∗) (75)
(π1 σ)∗ = σ∗.1 (76)
(t[σ])∗ = t∗[σ ◦ w, σ∗] (77)

(π2 σ)∗ = σ∗.2 (78)

for the unit:

>∗ = > (79)
tt∗ = tt (80)
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for products:

(Σ A B)∗ = Σ A∗[η1] B∗[η2] (81)
(t.1)∗ = t∗.1 (82)
(t.2)∗ = t∗.2 (83)
(s, t)∗ = (s∗, t∗) (84)

where:

η1 = (w, v.1) (85)

η2 = (w3, v.1[w], (v[w2], v), v.2[w]) (86)

for functions:

(Π A B)∗ = Π A[σ1] (Π A∗[σ2] B∗[σ3]) (87)
(app t)∗ = (app (app t∗))[ν1] (88)

(λ t)∗ = λ (λ (t∗[ν2])) (89)

where:

σ1 = w2 (90)

σ2 = (w2, v) (91)

σ3 = (w4, v[w], (v[w3], v), (app v)[w]) (92)

ν1 = (w2, v.1, v[w], v.2) (93)

ν2 = (w3, v[w], (v[w2], v)) (94)

and for the universe:

U∗ = Π (El v) U (95)
(El t)∗ = El (app t∗) (96)
(>U )∗ = λ >U (97)

(ΣU s t)
∗ = λ (ΣU (app s∗)[η1] (app t∗)[η2]) (98)

(ΠU s t)
∗ = λ (ΠU s[σ1] (ΠU (app s∗)[σ2]

(app t∗)[σ3])) (99)

The main point of this lengthy definition is that the equa-
tions ensure that the operations ∗ are recursively defined in
the initial model by the given equations. This will be checked
in detail in the Appendix. We will capture this feature in the
definition of an interpretation.

Remark 13. To treat binary parametricity a product of
contexts should be added, so that for Γ : Ctx we can define
Γ∗ : Ty (Γ,Γ).

Remark 14. A parametric model needs products and a unit
in the equations for ·∗ and (Γ, A)∗. Moreover a parametric
model with a universe needs functions in the equation for U∗.

C. Definition of an interpretation

In this section we give a definition capturing the features of
parametricity making the rest of this paper work. We assume
the reader familiar with GAT (Generalized Algebraic Theories
[20]).

For T a GAT, we denote by AlgT the category of models
of T and IT its initial model, so IT is the initial object in
AlgT . Note that we will only consider finitary GATs.

Definition 15. Let T be a finitary GAT. An interpretation for
T is a GAT of the form:

T,O,E,E′ (100)

where:
• O is a set of unary operations defined recursively in IT

by equations E.
• E′ is a set of unary equations proved inductively in IT .

Remark 16. Here a unary operation is an operation with one
main input, and possibly secondary inputs inferred from it.
This means that:

(x :A)→ (y :B x)→ C (101)

is considered unary, as x can be inferred from y. For example
the operations (65) to (68) are considered unary. They take a
context, a type, a term or a substitution as their main input.

Unary equations are defined similarly as equations depend-
ing on one main variable, with possibly secondary variables
inferred from it.

Remark 17. We clarify the expression ‘recursively defined in
IT ’. It means that for any constructor c in T and any added
unary operation ∗ in T ′, we have an equation in T ′ of the
form:

(c(x1, . . . , xn))∗ = c∗(x1, x
∗
1, . . . , xn, x

∗
n) (102)

where c∗ is a term in T .
Moreover it means that for any equation s = t in T , we

have s∗ = t∗ in T , where s∗ and t∗ are computed using the
recursive equations.

Equation 102 makes sense only when there is precisely one
unary operation ∗ by sort (as for parametricity), but the
analogous general formula is clear.

Remark 18. This definition can be reformulated more pre-
cisely using the theory of signatures for QIITS as in [24]. In
this theory, given a signature:

Γ ` (103)

we have a signature for displayed algebras:

Γ ` ΓD (104)

and a signature for sections of such a displayed algebra:

Γ,ΓD ` ΓS (105)

Then an interpretation is an extension of Γ of the form:

Γ,ΓS [id, t] (106)

where we have:

Γ ` t : ΓD (107)

in the theory of signature.

Interpretations will be used in Section IV. In Section III we
will use the weaker notion of extensions by operations and
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equations, without new sorts. Now we give toy examples of
interpretations.

Example 19. The theory of sets with an endofunction is
an interpretation of the theory of sets. This just means the
extension of:

X : Set (108)

by:

s :X → X (109)

is an interpretation. We do not need any equation defining s
because X is empty in the initial model.

Example 20. The theory of groups is an interpretation of the
theory of monoids. Indeed it is the extension of the theory of
a monoid (M, e, ·) where O is:

−1 : M →M (110)

and E is:

e−1 = e (111)

(m · n)−1 = n−1 ·m−1 (112)

with E′ as follows:

m ·m−1 = e (113)

m−1 ·m = e (114)

Example 21. The theory of reflexive graphs is an interpreta-
tion of the theory of graphs. Indeed this is the extension of the
theory of graphs:

V : Set (115)
E : V → V → Set (116)

by:

r : (v : V )→ E v v (117)

Now we are ready to give our main interpretation.

Theorem 1. Parametricity is an interpretation of type theory.

Proof: We denote by TT (resp. pTT) the theory of
models of type theory (resp. parametric such models). We see
that operations ∗ are unary for TT.

In order to prove that pTT is an interpretation of TT, we
need to check that equations (69) to (99) from Definition 12
indeed define some operations ∗ in ITT the initial model of
type theory, as indicated in (65) to (68).

To check this we see the initial model of type theory as a
QIIT [23]. Then we just need to check that for any equation
s = t in TT, the elements s∗, t∗ defined recursively by
equations (69) to (99) are equal in ITT. This tedious but
straightforward task is done in the Appendix.

Remark 22. The reader uninterested in extra generality can
replace any interpretation T ′ of T by the interpretation pTT
of TT in the rest of this paper.

We will show that for any interpretation T ′ of T , the
forgetful functor:

U : AlgT ′ → AlgT (118)

has a right adjoint.

III. ADJOINTS TO FORGETFUL FUNCTORS

In this section we assume an extension of finitary GATs
denoted T ⊂ T ′ where T ′ adds operations and equations, but
no new sort to T . We want to show that the forgetful functor
(118) has a right adjoint if and only if it commutes with finite
colimits. We have in mind the special case where T ′ is an
interpretation of T .

We will use the fact that finitary GATs correspond to finitary
essentially algebraic theories as indicated in Section 6 of [20].
This means (among other things) that models for a finitary
GAT form an lfp (locally finitely presented) category. The rich
theory of such categories is presented in [19]. In this section
we will use both GATs and essentially algebraic theories at
will.

All the results presented in this section are well-known to
experts in lfp categories.

A. Existence of a left adjoint

Lemma 23. The forgetful functor:

U : AlgT ′ → AlgT (119)

has a left adjoint.

Proof: This is mentioned at the end of Section 15 in [20],
as a straightforward extension of this fact for algebraic theories
[25].

Example 24. For parametricity, the left adjoint is freely
adding parametricity to a model of type theory. This construc-
tion is often degenerate. Indeed freely adding parametricity
to a model contradicting parametricity gives an inconsistent
model, that is a mathematical world where everything is true.

B. The forgetful functor is finitary

Recall that a functor is called finitary if it commutes with
filtered colimits, and conservative if it reflects isomorphisms.

Lemma 25. The forgetful functor:

U : AlgT ′ → AlgT (120)

is finitary and conservative.

Proof: Lemma 2.3.6 from [26] states that for a finitary
essentially algebraic theory T the forgetful functor (here S is
the set of sorts in T ):

UT : AlgT → SetS (121)

is finitary and conservative. Then we have a commuting
triangle of functors:

UTU = UT ′ (122)

and U is finitary and conservative by Lemma 26.
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Lemma 26. Assume two functors F and G. If G and GF are
finitary and conservative, then so is F .

Proof: It is clear that F is conservative, because if F (g)
is an isomorphism, so is GF (g), and then so is g because GF
is conservative.

For U : C → D a functor and a diagram i 7→ ci in C we
denote by ψU the canonical map:

ψU : colimi U(ci)→ U(colimi ci) (123)

By definition, U commutes with the colimit of i 7→ ci if and
only if ψU is an isomorphism.

For any diagram i 7→ ci, we have a commutative triangle:

G(ψF ) ◦ ψG = ψGF (124)

If the diagram is filtered ψG and ψGF are isomorphisms,
therefore so is G(ψF ). But G is conservative so ψF is an
isomorphism and F is finitary.

C. Sufficient condition for a right adjoint

The next lemma is well-known for functors between lfp
categories.

Lemma 27. The forgetful functor:

U : AlgT ′ → AlgT (125)

has a right adjoint if and only if it commutes with small
colimits.

Proof: Recall that the category of models for a finitary
essentially algebraic theory is an lfp category (by Theorem
3.36 in [19]). Moreover (by Theorem 1.46 in [19]) any lfp
category C is equivalent to:

Lex(Copfin,Set) (126)

via the Yoneda embedding where:
• Cfin is the category of finitely presented objects in C.
• Lex(C,D) is the category of functors from C to D

commuting with finite limits.
We suppose given a functor between lfp categories:

U : C → D (127)

commuting with small colimits. We define:

R : D → Lex(Copfin,Set) (128)
R(d) = HomD(U , d) (129)

This is well-defined because U commutes with finite col-
imits. Now recall that in an lfp category any object c is a
canonical filtered colimit of finitely presented objects (Propo-
sition 1.22 in [19]), so we have:

c = colimi ci (130)

with ci finitely presented. But by the definition of R we have:

HomC(ci, R(d)) = HomD(U(ci), d) (131)

therefore:

HomC(c,R(d)) = HomC(colimi ci, R(d)) (132)
= limi HomC(ci, R(d)) (133)
= limi HomD(U(ci), d) (134)
= HomD(colimi U(ci), d) (135)
= HomD(U(c), d) (136)

where we used the fact that U commutes with filtered colimits.
So R is indeed a right adjoint to U .

Theorem 2. The forgetful functor:

U : AlgT ′ → AlgT (137)

has a right adjoint if and only if it commutes with finite
colimits.

Proof: It is well-known that a functor commuting with
finite and filtered colimits commutes with small colimits. This
is because any small colimit is a coequalizer of coproducts,
and a coproduct is a filtered colimit of finite coproducts.

But U commutes with filtered colimits by Lemma 25, so
by Lemma 27 it has a right adjoint if and only if it commutes
with finite colimits.

IV. CONSTRUCTING RIGHT ADJOINTS FROM
INTERPRETATIONS

In this section we assume given T ′ an interpretation of
T . Mimicking parametricity, we denote by ∗ any unary
operation added in T ′. We want to prove that the forgetful
functor:

U : AlgT ′ → AlgT (138)

commutes with finite colimits, so that it has a right adjoint.
This theorem is proved using the definition of colimits in AlgT
and AlgT ′ as QIITs.

Notation 28. In the rest of this section we write 〈sj〉 for the
sequence (s1, . . . , sn), where n can be inferred.

Notation 29. As already indicated in Remark 17, for c a
constructor in T , and ∗ a unary operation added in T ′, we
denote by:

c〈xj〉∗ = c∗〈xj , x∗j 〉 (139)

with c∗ some term in T the equation defining ∗ recursively
on c.

A. Commutation with the initial object

The next lemma implies the well-known fact that the initial
model of type theory is parametric.

Lemma 30. The forgetful functor:

U : AlgT ′ → AlgT (140)

commutes with initial objects.

Proof: We consider the initial object IT in AlgT . By
definition of an interpretation, we can define operations ∗
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on IT which obey the unary equations added in T ′, so that
(IT , ∗) : AlgT ′ .

Now it is enough to prove that (IT , ∗) is initial in AlgT ′ ,
so that:

U(IT ′) = U(IT , ∗) = IT (141)

To this end, we show that the unique morphism:

ψ : HomAlgT
(IT , U(C)) (142)

for any C :AlgT ′ commutes with ∗. So we prove by induction
on IT that ψ(x∗) = ψ(x)∗ for any x.

Indeed we have:

ψ(c〈xj〉∗)
d
= ψ(c∗〈xj , x∗j 〉) (143)
m
= c∗〈ψ(xj), ψ(x∗j )〉 (144)
i
= c∗〈ψ(xj), ψ(xj)

∗〉 (145)
d
= (c〈ψ(xj)〉)∗ (146)
m
= ψ(c〈xj〉)∗ (147)

where i
= indicates induction, d

= definition of ∗ and m
= the

fact that ψ is a morphism in AlgT .
From this we can conclude that:

ψ : HomAlgT ′ ((IT , ∗), C) (148)

and it is the unique such morphism by initiality of IT .

B. Commutation with pushouts

The next lemma uses in a crucial way the hypothesis that
operations added in an interpretation are unary.

Lemma 31. The forgetful functor:

U : AlgT ′ → AlgT (149)

commutes with pushouts.

Proof: Given a span in AlgT ′ :

C1
f1← D f2→ C2 (150)

our goal is to define operations ∗ on the pushout:

C = U(C1)
∐
U(D)

U(C2) (151)

and prove that C equipped with these operations is a pushout
in AlgT ′ .

The object C is generated by:
• The constructors in T (as for IT in the previous lemma).
• For ε = 1, 2 morphisms:

pε : HomAlgT
(U(Cε), C) (152)

meaning that we have constructors pε for contexts, types,
terms and substitutions, as well as equations for pε
commuting with any constructor in T .

• For any x in D we have:

p1(f1(x)) = p2(f2(x)) (153)

First we define ∗ recursively on C. For the constructors of
T we proceed as for IT , for the new constructors we define:

pε(x)∗ = pε(x
∗) (154)

This definition makes sense only for unary operations.
We need to check this preserves the equations. For equations

in T this is checked in the Appendix, and we see for equations
on pε that:

pε(c〈xj〉)∗
d
= pε(c〈xj〉∗) (155)
d
= pε(c

∗〈xj , x∗j 〉) (156)
m
= c∗〈pε(xj), pε(x∗j )〉 (157)
d
= c∗〈pε(xj), pε(xj)∗〉 (158)
d
= c〈pε(xj)〉∗ (159)

where d
= indicates the definition of ∗ and m

= the fact that pε
are morphisms in AlgT . Moreover for x in D:

p1(f1(x))∗
d
= p1(f1(x)∗) (160)
f
= p1(f1(x∗)) (161)
= p2(f2(x∗)) (162)
f
= p2(f2(x)∗) (163)
d
= p2(f2(x))∗ (164)

where d
= indicates the definition of ∗ and

f
= comes from the

fact that fε is a morphism in AlgT ′ . So we have defined the
operations ∗.

Next we check that any x in C obeys the unary equations
added in T ′. We proceed inductively on x. When x is
constructed from T we use the hypothesis that equations are
inductively proven in the initial model. When x is of the form
pε(x

′) we use the fact that equations added in T ′ are true in
Cε so they are true for x′, together with the fact that pε is a
morphism so it preserves equations.

Now we have (C, ∗) : AlgT ′ , we want to check that it is a
pushout. To do this it is enough to check that any morphism:

ψ : HomAlgT
(U(C1)

∐
U(D)

U(C2), U(E)) (165)

defined from a commutative square in AlgT ′ :

D

f2

��

f1 // C1
g1

��
C2 g2

// E
does commute with the operations ∗ previously defined. By
definition, ψ is such that:

ψ(pε(x)) = gε(x) (166)

We proceed inductively, using computations from the pre-
vious lemma, together with the following new case:

ψ(pε(x)∗) = ψ(pε(x
∗)) (167)

= gε(x
∗) (168)

= gε(x)∗ (169)
= ψ(pε(x))∗ (170)
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This concludes the proof.

C. Main theorem and applications

We are ready to give the most important result in this paper.
Recall that we have assumed a forgetful functor:

U : AlgT ′ → AlgT (171)

for T ′ an interpretation of T .

Theorem 3. The forgetful functor:

U : AlgT ′ → AlgT (172)

has a right adjoint.

Proof: By Theorem 2 it is enough to show that U
commutes with finite colimits. This is precisely the content
of Lemmas 30 and 31.

Example 32. We consider groups interpreting monoids. In this
case the right adjoint is:

C : Mon→ Grp (173)

C(M) = M× (174)

where M× is the group of invertible elements in M . Indeed
Z is the free group generated by {1}, so the underlying set of
C(M) is:

C(M) = HomSet({1}, C(M)) (175)
= HomGrp(Z, C(M)) (176)
= HomMon(Z,M) (177)

= M× (178)

The group structure is computed in the same way.

Example 33. We consider the interpretation of graphs by
reflexive graphs. Recall that reflexive graphs are given by the
theory:

V : Set (179)
E : V → V → Set (180)
r : (v : V )→ E v v (181)

The right adjoint is:

C : Gph→ rGph (182)
C(V,E) = (v : V )× E v v,

(v, e)(v′, e′) 7→ E v v′,

(v, e) 7→ e (183)

To see this we consider Ic the free reflexive graph generated
by {c} a vertex. Then the set of vertices of C(V,E) is:

C(V,E) = HomSet({c}, C(V,E)) (184)
= HomrGph(Ic, C(V,E)) (185)
= HomGph(U(Ic), (V,E)) (186)
= (v : V )× E v v (187)

The rest of the structure is computed in the same way.

Example 34. We consider the interpretation:

X : Set (188)
s : X → X (189)

of the theory with X : Set alone. We denote its category of
models by Sets.

Sets = {X : Set | s :X → X} (190)

Then the right adjoint is:

C : Set→ Sets (191)
C(X) = N→ X,

f 7→ (n 7→ f(n+ 1)) (192)

To see this, note that N with the successor function is the free
object in Sets generated by {0}. Then the underlying set of
C(X) is:

C(X) = HomSet({0}, C(X)) (193)
= HomSets(N, C(X)) (194)
= HomSet(N, X) (195)

The function f 7→ (n 7→ f(n + 1)) is computed in the same
way.

These three examples should be contrasted with each other:
• In the first example, being invertible is a property of

an element in a monoid (because there is at most one
inverse). Then the right adjoint just needs to send a
monoid to its group of invertible elements. This can be
generalized to any unary property inductively provable,
with the right adjoint sending an object to its subobject
of elements obeying this property.

• In the second example, having an edge from v to v is
really a structure on a vertex v (because there can be
many such edges). So in this case we need to consider
vertices together with a chosen edge in order to construct
the right adjoint.

• The third example is the most interesting. Here having
an image by s is clearly a structure, but to build the right
adjoint it is not enough to require that any element comes
with its image by s. Indeed this image should itself have
an image, and so on. An iteration is taking place. This
can be generalized to the interpretation of any theory T
by the theory of T -algebras with an endomorphism.

Now we study our main example.

Example 35. Consider the forgetful functor:

U : AlgpTT → AlgTT (196)

from parametric models to models of type theory. By Theorems
1 and 3 it has a right adjoint C. Now we study C(D) for D
a model of type theory. We denote by IX the free parametric
model generated by an element X : Ctx. Then:

CtxC(D) = HomSet({X},CtxC(D)) (197)
= HomAlgpTT

(IX , C(D)) (198)

= HomAlgTT
(U(IX),D) (199)
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but reasoning as in Lemmas 30 and 31, we can prove that
U(IX) is isomorphic to the free (non-parametric) model of
type theory with:

X : Ctx (200)
X∗ : Ty X (201)
X∗∗ : Ty (x :X,X∗(x), X∗(x)) (202)

...

with the usual notation for contexts in a CwF. So giving a
context in C(D) is equivalent to giving:

Γ : CtxD (203)
Γ∗ : TyD Γ (204)

Γ∗∗ : TyD (x : Γ,Γ∗(x),Γ∗(x)) (205)
...

We can get similar formulas for types, terms, and so on.

Remark 36. The right adjoint C does not suffer from the
same defect as the left adjoint in Example 24. We assume an
empty type ⊥ and we say that a model is inconsistent if its ⊥
is inhabited. If C(D) is inconsistent then so is U(C(D)), and
the counit:

ε : HomAlgTT
(U(C(D)),D) (206)

implies that D is inconsistent.

Remark 37. Binary parametricity can be treated by our
method. By following the last example, we see that a context
in C(D) would consist of:

Γ : CtxD (207)
Γ∗ : TyD (Γ,Γ) (208)

Γ∗∗ : TyD (x00, x01 : Γ,Γ∗(x00, x01),

x10, x11 : Γ,Γ∗(x10, x11),

Γ∗(x00, x10),Γ∗(x01, x11)) (209)
...

So we are constructing the semi-cubical model in D.

Remark 38. It should be noted that our method does not
immediately give an explicit definition for the three dots in
Remarks 35 and 37. This lack of concreteness is compensated
by some extra generality.

V. CONCLUSION

In this paper we defined a procedure from interpretations
of type theory to structures on types, outputting semi-cubical
structure when given external parametricity. In order to do
this we defined interpretations of any theory, and built a right
adjoint from any such interpretation.

Our next work will be to apply this method to other
interpretations of type theory. We would like to study forcing
interpretations giving us some variant of presheaf models, and
also the univalent parametricity from [17], hopefully allowing

us to build definitionally univalent models (meaning models
where A =U B is definitionally equal to A ' B) from
univalent models.

We would also like to make sense of the table already given
in introduction:

Interpretation Structure
External parametricity Semi-cubical types
Internal parametricity Cubical types
External univalence Kan semi-cubical types
Internal univalence Kan cubical types

This means that we need to find suitable interpretations. From
a practical point of view this would give an efficient way to
build univalent models of type theory, and might help to design
variants of cubical type theory. From a conceptual point of
view this could explain how the notion of Kan cubical structure
can be deduced from the notion of equivalence.

We also believe this work shed some light on forgetful
functors having both a left and a right adjoint. There is a
large literature on forgetful functors having a right adjoint
and coalgebras (see for example [27]), but we do not know
any reference on such functors having a left adjoint as well.
We believe these could be called unary functors by analogy
with finitary functors. More precisely, we guess there is some
kind of converse to Theorem 3, stating that the forgetful
functor of an extension of theories has a right adjoint if and
only if the extension obeys a condition weaker than being an
interpretation, and stronger than having unary operations.
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[19] J. Adámek and J. Rosický, Locally presentable and accessible cate-
gories. Cambridge University Press, 1994.

[20] J. Cartmell, “Generalised algebraic theories and contextual categories,”
Annals of pure and applied logic, vol. 32, pp. 209–243, 1986.
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