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Abstract

We present a formalization of monoids up to coherent homotopy in
Agda. In order to achieve this we postulate a structure of type theory
with two equalities with a notion of fibrant type. Then we build an operad
ooMon and define monoids up to coherent homotopy as its algebras. We
prove that this notion is invariant under equivalences between fibrant
types, and that loop spaces are such monoids.
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1 Introduction

Martin Lof’s Type Theory [I1] is a foundational system for mathematics which
replaces the primitive notion of sets by the notion of types. It has a compu-
tational interpretation in the sense that a program can be extracted from any
proof in type theory. Most modern proof assistant (Coq, Agda, Lean, ...) imple-
ment a variant of it. In this system given any type X and any z,y: X, one can
form the identity type Idx(z,y), which is inhabited if and only if 2 and y are
equal. But this construction can be iterated, for example given p,q: Idx (z,y),
one can form the type Idiqy (s, (P, ¢), and so on. In Extensional Type Theory
[12] [13], all iterated identity types are assumed to be inhabited, so that equali-
ties behave as in informal mathematics. This property is called the uniqueness
of identity proofs.

Homotopy Type Theory [15] is a variant of type theory in which types can
be interpreted as spaces up to homotopy equivalences, i.e. up to continuous de-
formations. An inhabitant of an identity type is then interpreted as a path in
the relevant space. The main feature of Homotopy Type Theory is the axiom
of univalence, which roughly states that isomorphic types are equal. Univa-
lence contradicts uniqueness of identity proofs, but it implies that types behave
like spaces, so that for example some homotopy groups of spheres have been
computed from this axiom by Brunerie, Licata and Shulman [6] @] [10].

One could try to define monoids in Homotopy Type Theory as the data of
a type A together with a binary operation — x _: A — A — A and a unit 1: A
such that for all a,b,c: A we have a path from (a x b) X ¢ to a x (b x ¢), and



similarly for the unit laws. But this definition is not satisfying because such
types do not behave as the usual monoids. In fact when we consider a,b,c,d: A
we have the following diagram:

((bxc) (bxc))
(e xd)) ((a x b)
(a xb) x (¢xd)

where lines are paths induced by the associativity of _ x _. In our context we
should require a filling of the diagram, that is a suitable path between paths, so
that the multiplications of 4 elements form a contractible space (i.e. a space that
can be continuously deformed to a point). Similarly for 5 elements one should
require a path between paths between paths, and so on. There should be similar
higher homotopies for the unit laws. Such monoids are called monoids up to
coherent homotopy or equivalently co-monoids. Our main goal is to define them
in type theory.

Monoids up to coherent homotopy are well-known in algebraic topology.
It is possible to define them using operads, as introduced by May [14] (other
approaches are possible e.g. the one by Boardman and Vogt [4]). An operad is
a well-behaved algebraic theory, and we can define its algebras. Operads can be
generalised to other setting than set, so that for example topological operads
have spaces of operations, and their algebras are spaces. An important result is
that there exists a topological operad whose algebras are precisely monoids up
to coherent homotopy.

For any space X and point z in X, we can define its loop space as the space
of path in X from = to . An oo-monoid is called group-like if the induced
structure of monoid on its connected components is in fact a group structure.
Now we use this vocabulary to list the main results in the classical theory of
oo-monoids. We give precise references to the book by Boardman and Vogt [4],
which develops a general theory of structures up to coherent homotopy.

1. Loop spaces are oo-monoids, with the concatenation of paths as multipli-
cation [4, Prp 3.25]. They are group-like because any path has an inverse
up to homotopy induced by traversing the path backward.



2. If X is an oo-monoid and f is a homotopy equivalence between X and a
type Y, then Y has an induced structure of co-monoid [4, Thm 4.37].

3. If X is an co-monoid, then its structure is induced by a topological monoid
Y and a homotopy equivalence between X and Y [4, Thm 4.37].

4. If X is a group-like oco-monoid, then its structure is induced by a loop
space Y and a homotopy equivalence between X and Y [4, Thm 6.30].

So to summarize we know that co-monoids are precisely spaces homotopically
equivalent to a topological monoid, and group-like oo-monoids are precisely
spaces homotopically equivalent to a loop space. In this report we present a
formalization of 1 and 2.

At this point it should be noted that the correspondence between goup-like
oo-monoids and loop spaces suggests to define co-groups in Homotopy Type
Theory as spaces equivalent to a loop space. This is the approach taken by
Buchholtz, van Doorn and Rijke [7].

The straightforward approach to our problem is to define operads in Homo-
topy Type Theory. But operads themselves obey a form of associativity, so a
definition of operads using paths as witnesses for this equality should itself be
stated up to coherent homotopy. To get out of this circularity we use a type
theory with two equalities, similar to Voevodsky’s Homotopy Type System [I6].
This method, called two-level type theory, has already been used to solve similar
problems by Annenkov, Capriotti and Kraus [I], and by Boulier and Tabareau
[B]. So given a type X and z,y: X, one has two types: a type z = y of witnesses
that x and y are equal, which obeys uniqueness of identity proofs, and a type
x ~ y of paths between z and y, which is meant to obey univalence. We call
_ = _ the strict equality. Then asscociativity for operads is stated using the
strict equality, and associativity for monoids up to coherent homotopy is stated
using paths.

In Sectionwe present the method from [I] to make both equalities cohabit
and we give the details of our variant. In Section [3| we give a type-theoretic
definition of operads. In Section [ we give an auxiliary result which will be
used to show our notion of monoids up to coherent homotopy invariant under
equivalences between fibrant types. In Section [5] we give a definition of the
operad coMon of monoids up to coherent homotopy and show its key property.
In Section [6] we show how to deduce from this key property that coMon-algebras
are invariant under equivalences between fibrant types, and that loop spaces are
ooMon-algebras.

Remark. We want to give a computer-checked account of the results presented
here. To do this we use the Agda proof assistant. Our formalisation can be
found at https: // github. com/hmoeneclaey/operads|

All results in Sections [3, [3, [4 and [f] have been fully formalized, but some
combinatorial results from Section[§ are missing.

Notations and conventions. Assume given a type X and a family of types
P indexed by X. The type of maps associating to x: X and element in P(x) is


https://github.com/hmoeneclaey/operads

denoted by:
(x:X)— P(x)

The type of x : X together with p: P(x) is denoted by Xx P or:
Y(z: X).P(x)

An element in X x P is sometimes denoted (x,p).

We write the applications of functions in the mathematical way, so that f(x)
is f applied to x. If f takes two arguments, we write f(x,y) instead of f(x)(y).

We write in an informal type-theoretic style, so that when we say “for all
x: X we have P(x)” we mean that (x : X) — P(x) is inhabited. Similarly
when we say “there exists x: X such that P(x)” we mean that X(x: X). P(x) is
inhabited.

If we refer to a mathematical concept which we did not explicitly define, we
mean its translation using the strict equality — = _. So for ezample the pullback
of f: X = Z byg:Y — Z is defined as the projection from

S X)(y:Y). f(z) =9(y)

toY.

2 Two-level type theory

We present a variant of the two-level type theory defined by Annenkov, Capriotti
and Kraus [I]. It is inspired by Cubical Type Theory [g].

2.1 Introduction to two-level type theory

The main purpose of two-level type theory is to allow internalization of argu-
ments involving the usual equality to Homotopy Type Theory. In order to do so
a strict equality is introduced. On the other hand we still need a homotopical
equality, interpreted as the type of paths between two points. How is it possible
to have both equalities cohabiting harmoniously?

We use intuitions from the theory of model categories. A model category
has three classes of maps called fibrations, cofibrations and weak equivalences.
They are assumed to obey a certain number of axioms, which we do not list.
From a model category C, it is possible to build a relatively explicit description
of its homotopy category, which is the category C where weak equivalences have
been formally inverted. A model category C can be viewed as a nice presentation
of its homotopy category.

In any model category we can define the classes of fibrant and cofibrant ob-
jects. Usually maps out of cofibrant objects to fibrant objects are well-behaved
homotopically. The key intuition we use is that it is more convenient to have
non-fibrant and non-cofibrant objects at our disposal, even if we are ultimately
not interested in them. In our case we will axiomatize a universe of fibrant



objects, which is meant to satisfy univalence, sitting in a larger universe which
does not.

The reader should note that although we use these intuitions, universes in
two-level type theory do not carry the structure of a model category. In fact
fibrant replacements contradict the univalence of the fibrant universes [I].

2.2 Definition of the homotopical structure on types

We use Agda for implementation, so we have by default a (non-cumulative)
hierarchy of universes Sety for k an external natural number. We will often
write Set without index when our construction is valid in any Sety.

We use the default equality of Agda as strict equality. So for X a type and
x,y: X, we have a strict equality type denoted = y, with the usual elimination
principle. It is assumed to obey axiom K and function extensionnality, so that
it behaves more or less as the usual mathematical equality. Axiom K is stronger
than uniqueness of identity proofs, but we use it only because it is implemented
by default in Agda. Uniqueness of identity proofs is sufficient to formalize all
our results.

First a preliminary definition.

Definition 2.1. We say two types X and Y are isomorphic when there exists
f: X =Y andg:Y — X such that:

e For all x: X, we have g(f(x)) = =.
e Forally:Y, we have f(g(y)) = y.

Note that isomorphic types do not need to belong to the same universe.
Now we define a hierarchy of fibrant universes.

Definition 2.2. A hierarchy of fibrant universes in (Sety)ren is a family of
predicates Fib : Sety, — Sety, such that (when Fib(X) is inhabited we say that X
is fibrant):

o T is fibrant, where T is a terminal object in Set.
e If X is fibrant and P : X — Set is a family of fibrant types then
Y(x: X). P(x)

and
(z:X)— P(z)

are fibrant.
o If X is fibrant and X is isomorphic to Y, then Y is fibrant.

For now we still do not have a notion of homotopical equality. A possible
option is to axiomatize it as a constructor Path: (A : Set) - A — A — Set, as
in [I] or [5]. Instead we will axiomatize an interval I, inspired by cubical type
theory. The intuition is that I is the simplicial interval A!, or similarly the real
segment [0, 1].



Definition 2.3. An interval is a type I in Setq together with two inhabitants
0:1 and 1:1 such that:

e If P:1 — Set is a family of fibrant types, x : P(0) and y: P(1), then the
type of functions f: (i:1) — P(i) such that f(0) = x and f(1) = y is
fibrant.

e If X is fibrant and C: (I — X) — Set is a family of fibrant type, then given
d:(z:X)— C(N.x) we have an inhabitant J(d): (p:1 — X) — C(p).
Moreover J(d)(Xi.x) is definitionally equal to d(x).

We now give the definition of path types.

Definition 2.4. For X a type and x,y : X, we define the type of paths from x
to y as the type of functions f:1— X such that f(0) =z and f(1) = y. It is
denoted by x ~ y.

For x : X, we denote by hrefl, the inhabitant of © ~~ x with underlying
function \i.x.

A key point in the definition of T is that C is assumed to be a family of
fibrant types. This will guarantee that = ~~ y does not imply z = y, because
strict equality types are not fibrant.

Remarks. At this point a few remarks should be made.

o If X is fibrant and x,y : X, then x ~~ y is fibrant. In fact we included
strict equalities in the first axiom for 1 in order to guarantee that.

e The type I is not assumed fibrant.

o With our definition we can define paths in non-fibrant types. This is in
contrast with [1]. But these non-fibrant path types are very poorly behaved,
for example a path x ~~ y does not imply a path y ~ x. This does justify
the oriented notation.

e The elimination principle for paths is stated only for paths in fibrant types.
This limitation can probably be removed, the important point being that we
only eliminate into fibrant types.

e We have assumed definitional computation rule for J. We did this for
convenience, but everything could be done with the strict equalities:

J(d)(Ni.x) = d(x)

We use the Agda rewriting feature, so than we can postulate definitional
equalities.

Moreover we will assume that I has two connections — V _: I — I — I and
_A_:T—-1— 1 IfIis interpreted as the real segment [0, 1], then i V j is
interpreted as the maximum of 7 and j and i A j as their minimum.



Definition 2.5. Connections for an interval I are functions —V _:1—=1—1
and _ N _:1—1—1T such that for any i :1 we have:

e 1V1=1Vi=1landiv0O=0Vi=i.
e iNl1=1ANi=7andiNO=0A7=0.

Moreover we require _V _ associative, and —_A\_ distributing on the left of _V_,
i.e. for any 1,7,k : 1 we have:

e iV(jVk)=(iVj)VE.
e iA(GVE)=(iAf)V (iNK).

We have used as little as we could on the connections, explaining this some-
what unnatural list.

Assumption 2.6. We assume given a hierarchy of fibrant universes and an
interval with connections. We call them collectively the homotopical structure
of the universes.

2.3 Fibrations and equivalences
Now we define a some homotopical concepts.

Definition 2.7. A map f: X — Y is said to be an equivalence if there exists
91,92 Y — X such that:

e For all x: X we have x ~ g1 (f(x)).
e For ally:Y we have y ~ f(g2(y)).

We use different left and right inverses so that the type of witnesses that a
map is an equivalence is contractible. This definition is well-behaved only for
maps between fibrant types. For example, the composite of two equivalences
between non-fibrant types is not necessarily an equivalence.

Definition 2.8. The fibre of a map f: X —Y overy:Y is the type:
Yrz:X). fz)=y
It is denoted by fibre(y).

It is straightforward to show that any function f: X — Y is isomorphic to
the projection:
Y(y:Y).fibres(y) — Y.

Similarly the fibre of the projection:
Sy:Y).Ply) =Y

over y: Y is isomorphic to P(y). This gives a correspondence between maps to
Y and families P:Y — Set.



Definition 2.9. A map f: X — Y is called a fibration if its fibres are fibrant.
The type Y is then called the base of the fibration f.

So fibrations with base Y corresponds to families of fibrant types over Y.

Definition 2.10. A type X is called contractible if there is x : X such that for
all y: X we have x ~> y.

Once again, this notion is well-behaved only for fibrant types.

Definition 2.11. A fibration f: X — Y s said trivial if its fibres are con-
tractible.

Now we state some basic properties of these notions. The proofs can be
found in the formalization. We will use these lemmas without references in the
rest of the text.

Lemma 2.12. Equivalences between fibrant types obey the two-out-of-three prop-
erty. O

Lemma 2.13. A trivial fibration is an equivalence. O

Lemma 2.14. A map between fibrant types is a trivial fibration if and only if
it is a fibration and an equivalence. O

Lemma 2.15. The pullback of a fibration (respectively trivial fibration) is a

fibration (respectively trivial fibration). O
Lemma 2.16. AssumeY fibrant and f: X — Y a fibration. Then X is fibrant.
O
The next lemma is often called the contractibility of singletons.
Lemma 2.17. Assume X is fibrant and x : X. Then the type:
Sy:X).x~y
s contractible. O

The next lemma shows that our definition of contractibility is reasonable,
because it implies trivial higher equalities on the type.

Lemma 2.18. Assume given X is a contractible fibrant type and x,y:X. Then
x ~= 1y 1s contractible. O

Lemma 2.19. Assume given f: X — Y an equivalence between fibrant types.
Then for any y:Y, the type:

E(@:X). f(z) ~y
is contractible. O

The last lemma is a bit technical, an informal proof can be found in [I5]
Thm 4.4.5].



2.4 Lifting properties

In this section we introduce some consideration on lifting properties. They are
basic tools in the theory of model categories, and we will use them to define
suitable notions of cofibrations.

Definition 2.20. Assume given two maps u: A — B andp: X — Y. We says
that u has the left lifting property against p (or equivalently that p has the right
lifting property against u) if for any commutative square:

A— X

Pl
J

-

B——Y
there exists a dotted arrow making the two triangles commute.

If u: A — B has the left lifting property against p: X — Y, then we say
that any local section of p over A can be extended to a local section of p over
B. The next lemma is straightforward to prove.

Lemma 2.21. Assume given two maps u: A — B and p: X — Y. If p has the
right lifting property against u, then so does any pullback of p. O

Now we define two useful constructions on maps.
Definition 2.22. Assume given two maps u: A — B andp: X — Y. Then the
induced map of type:
(B—>X)— (B—=Y)xasy (A= X)
is called the pullback-exponential of u and p and is denoted (u/p).

Definition 2.23. Assume given two maps u: A — B and v: A" — B’. Then
the induced map of type:

AxB’AHABxA’—>(B><B’)
></

18 called the pushout-product of u and v and is denoted uJv.

Note that the pushout in the last lemma is formalized as a strict quotient.
Now we justify the interest of the pullback-exponential construction.

Lemma 2.24. Assume given two maps u and p. Then (u/p) has a section if
and only if u has the left lifting property against p. O

We say that two maps are isomorphic if there are isomorphisms between
their codomains and domains such that the induced square commutes. We will
use without mention the fact that all the classes of maps defined in this report
are stable under isomorphisms.

The next lemma is proved by a straightforward but lengthy computation,
and shows the duality between pullback-exponentials and pushout-products.

Lemma 2.25. Assume given maps u, v and p. Then (uOwv/p) is isomorphic

to (u/(v/p))- 0
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2.5 The cocylinder factorization for fibrant types
We present a useful factorization of maps.

Lemma 2.26. Assume given a map f between fibrant types. Then it factors
as a section of a trivial fibration followed by a fibration. Moreover if f is an
equivalence then the fibration is trivial.

Proof. Assume given a map between fibrant types f: X — Y. Then we have
the factorisation of f through:

S X)(y:Y). f(x) ~ y

as Az. (z, f(x), hrefly(,) followed by the projection to Y.
The map Az. (z, f(x), hrefly(,)) is a section of the projection:

(B X)) f@) = y) — X
whose fibre over x : X is isomorphic to:
L(y:Y) f(z) ~y

but this type is clearly fibrant and it is contractible by Lemma Therefore
Az. (z, f(x), hrefl¢(,)) is a section of a trivial fibration.
The fibre of the projection:

(E(:c X (y:Y). f(z) ~ y) Y
over y: Y is isomorphic to:

S(a: X). f(a) ~y

This type is fibrant and if f is an equivalence then it is contractible by Lemma
2.79] O

3 Operads and their algebras

In this section we give a type-theoretic definition of operads. We do not use the
homotopical structure of the universes, so that our definition makes sense in any
type theory obeying uniqueness of identity proofs and function extensionnality.

3.1 Introduction to operads

We give an overview of operads from the classical point of view (i.e. in a set-
theoretic foundations).

Intuitively operads are certain well-behaved algebraic theories. These the-
ories are called linear because they can be defined by equations with variables
occurring exactly once on each side.

11



First we present non-symmetric operads in sets. In this case an operad is
a family of sets (P(n))nen, indexed by the natural numbers. Intuitively P(n)
is the set of n-ary operations in the represented algebraic theory. These sets
should be equipped with:

e An element in P(1) called the identity (intuitively the operation z — x).

e A composition of operations denoted -y, which, given ¢ € P(n) and d; €
P(k;) for 1 < i < n, outputs an element v(c;dy,---,cp,) in P(XI_k;).
Intuitively, given ¥ an n-ary operation and given ¢; a k;-operation for
1 <@ < n, their composition v(1; @1, -, @n) corresponds to:

(«Ti,j)lgign,lgjgki = ’(/}((101(3:1,17 e 7x1,k‘1)7 e 73071(:571,17 e ;(En,kn))

Moreover this structure should obey some axioms suggested by the intuitive
interpretation. Note that if for example b € P(2) is interpreted as (z,y) +—
¥(x,y), there is no way to consider (x,y) — ¥(y, ), this is justify the name of
non-symmetric operads: the order of the inputs is fixed. In this report we only
consider non-symmetric operads, so we call them operads.

For any operad P we have a notion of P-algebra structure on a set X. Such
a structure consists of an actual operation X™ — X for each element in P(n),
respecting identity and compositions in some sense. We say that P acts on X.

A first example is the operad Mon corresponding to the theory of monoids.
Then Mon(n) a singleton for any n € N, because precisely one n-ary operation
preserving the order of its inputs can be derived from the axioms of monoids.
It is equipped with the obvious compositions and identity. An algebra for this
operad is a monoid in the usual sense.

An attractive feature of the definition of operad is that it can be adapted
straightforwardly to any monoidal category other than the category of sets by
requiring that P is a family of objects in the category, and that all functions
are morphisms. Operads in the category of topological spaces can be used to
define monoids up to coherent homotopy. Our goal is to adapt this idea with
types instead of topological spaces, so that we can define monoids up to coherent
homotopy in type theory. So we first need to define operads in two-level type
theory, and then we will give an operad which we call coMon, and give some
results supporting the claim that coMon-algebras are precisely monoids up to
coherent homotopy.

3.2 A type theoretic definition of operads

The main problem one encounter when defining operads in type theory as func-
tions P : N — Set with extra structure, is that the axioms of operads are not
well-typed, so transport along strict equalities in N needs to be used. Instead
we define operads as functors from the groupoid of finite totally ordered sets
to the category of types. So we replace transport by the action of a functor
on isomorphisms of finite totally ordered sets, on which we have a more direct
control.

12



Definition 3.1. For any n: N, we define Fin(n) as the type of k: N such that
k<n.

In the implementation we give an inductive definition of the family:
Fin: N — Setq

In fact we only need some canonical finite totally ordered sets, no matter how
they are defined. Then the most convenient way to define a finite totally ordered
set is as a type A together with an isomorphism between A and a canonical finite
set. The order on A is induced by the order on the canonical finite set.

Definition 3.2. The groupoid FOSet of (small) finite totally ordered sets is
defined as follows:

e An object consists of A:Setgy together with n:N and an isomorphism from
A to Fin(n). This induced an order on A.

e A morphism is an order-preserving isomorphism between the underlying
types.

Note that there exists at most one morphism between two objects in FOSet.

We will often omit the coercion of an object in FOSet to its underlying
type, and of a morphism in FOSet to its underlying function. Moreover for
A, A’ : FOSet we will denote by A = A’ the type of isomorphisms from A to A’
in FOSet.

The next few lemmas are easy to prove, but are necessary to state our
definition of operads.

Lemma 3.3. Assume A:FOSet and B: A — FOSet. Then X 4B is in FOSet.

In the proof of the last lemma we need to construct an order on ¥ 4 B. This
is done by saying that for any a,a’: A and b: B(a) and b’ : B(a'), we have that
(a,b) < (a/,b) if and only if a < @’ or a =a’ and b < V.

Lemma 3.4. Assume given:

A, A" : FOSet.

e B: A — FOSet and B’ : A’ — FOSet.
o [:AXA.
e F:(a:A)— B(a) 2 B'(f(a)).

Then we have:
(f,F) YuB=X 4B

Lemma 3.5. Assume given A :FOSet, then we have:

n'y: A= A x Fin(1)

13



Lemma 3.6. Assume given B :Fin(1) — FOSet, then we have:
np : B(0) = Xpin) B
Lemma 3.7. Assume given:
e A:FOSet.
e B: A — FOSet.
e (C:X4B — FOSet
Then we have:
Yapc:S(a:A)(b:B(a)).C(a,b) =2 Xy, gC
We are now ready to state the main definition of this section.
Definition 3.8. An operad consists of:
e A functor P from FOSet to Set.
o An element idp : P(Fin(1)).
e Given A:FOSet and B: A — FOSet, a function:

vp  P(A) = ((a L A) P(B(a))) — P(Z4B)

such that:
1. Assume given:

e A:FOSet and B, B’ : A — FOSet.
e F':(a:A) — B(a) 2 B'(a).
e c:P(A) andd: (a: A) — P(B(a)).

Then we have:
Pz, F)(p(c,d)) = vp (e Aa. P(F(a))(d(a) )

2. Assume given:

o A/ A’ :FOSet and f: A= A
e B': A" - FOSet.
e c:P(A) and d: (a': A’) = P(B'(d))

Then we have:

P(f. Ax.z)(vp(e,do f)) = vp(P(f)(c).d)
Note that (f, Ax.z):X(a: A). B'(f(a)) XX s B’.
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3. Given A:FOSet and c¢:P(A) we have:
v (e, A—id) = P(ny)(c)

4. Given B :Fin(1) — FOSet and d: (z : Fin(1)) — B(x) we have:
p(id, d) = P(n5)(d(0))

5. Assume given:

A:FOSet and c: P(A).

B:A—FOSet and d: (a: A) — P(B(a)).
C:34B — FOSet

e c:(x:X4B) = P(C(x)).

Then we have:
vp(vp(c,d), €) = P(Ya,,c)(vp(c, Aa. vp(d(a), Ab. e(a, b))

Now we explain the meaning of the five equations in this definition.

Equations 1 and 2 mean that yp is natural in the only reasonable sense.
It is not stated as one equation to avoid the use of a transport along a strict
equality, using the decomposition of any function:

(f,F) :XaB — EA/BI

as:
2aB YD 50 A). B (f(a)) X2 v, B

Equations 3 and 4 roughly state that idp is a unit on the right and left for
vp, and equation 5 that yp is associative.

To build a usual operad Q : N — Set out of such an operad P, one should
define Q(n) as P(Fin(n)) for n:N. So we will use the notation P(n) for P(Fin(n))
with n: N.

We define morphisms between operads.

Definition 3.9. Let P and Q be operads. A morphism from P to Q is a natural
transformation o of the underlying functors such that:

1. aFin(l)(idP) = idQ.
2. Assume given:

e A:FOSet and B: A — FOSet.
e c:P(A) and d: (a: A) — P(B(a))

Then we have:

as,5(vp(c,d)) = vo(aa(c), Aa. ap(y)(d(a)))

15



Definition 3.10. We define an operad Mon. For any A : FOSet, the type
Mon(A) is T the terminal object of Set. The identity and compositions can be
defined in a unique way. This operad is terminal.

Now we define the pullback of operads. Together with the previous definition
this shows that the category of operads has all finite limits.

Lemma 3.11. Assume given two morphisms of operads:
a:P =R

and
B:9—=>R

Then the pullback of a and B seen as natural transformations can be endowed
with the structure of a pullback of operads.

Proof. We denote by P x Q the pullback of o and (3 seen as natural transforma-
tions. Then the operad structure on P X Q can be defined on each component,
and it is straightforward to show that this defines a pullback of operads. O

3.3 Algebras for an operad

Recall that we want a notion of algebra for an operad. For X to be a P-algebra,
we need to associate to any c¢: P(A) an element of (A — X) — X, i.e. an A-ary
operation on X. This should be done in a way compatible with idp and ~p.
This motivates the following two definitions.

Definition 3.12. Assume given X : Set. Then we define an operad Endx .

e For A:FOSet we define Endx(A) as (A — X) — X. This has an obvious
functor structure.

o We define idgndy : Endx (1) as Af. f(0).
e Assume given A:FOSet and B: A — FOSet, together with:
c:(A=X)—> X

and
d:(a:A) = (Bla) > X)—> X

Then we define Yenay (¢, d) as:
Af.e(Ma.d(a, \b. f(a,b)))

The composition takes an A-ary operation ¢ and for any a: A a B(a)-ary op-
eration d(a), and outputs a ¥ 4 B-ary operation in the natural way. A pleasing
feature of our definition of operads is that Endx obeys the axioms of oper-
ads definitionally. Note that Endx is not functorial in X, because of variance
problems.

Now we can give the definition of algebras for an operad.

16



Definition 3.13. Assume given X : Set and an operad P. Then a P-algebra
structure on X is defined as a morphism of operads from P to Endy.

This match our intuition, indeed for A : FOSet and c: P(A), a P-algebra
structure on X gives an element in (A — X) — X ie. a A-ary operation.
The fact that those operations respect the composition of P comes from the
fact that we ask for a morphism of operads from P to Endx. For example the
Mon-algebras are the strict monoids.

We define morphisms between P-algebras.

Definition 3.14. A morphism between two P-algebras (X, ex) and (Y, ey) is
amap f: X — Y such that for any A:FOSet and c: P(A) we have:

foex(c)=Ah.ey(c)(foh)

3.4 Toward an operad for monoids up to coherent homo-
topy

Recall that we want to define an operad coMon whose algebras are monoids
up to coherent homotopy. We use our new vocabulary to formulate its desired
properties:

1. For any A : FOSet, the type ooMon(A) should be contractible, because
there is a unique way up to homotopy to multiply A elements in a given
order.

2. For any x: X with X fibrant, the type x ~> x should be an coMon-algebra.
We say that fibrant loop spaces are coMon-algebras.

3. If two fibrant types are equivalent and one of them is an coMon-algebra,
then so is the other. We say that coMon-algebra are invariant under
equivalences.

4 Cofibrant operads

We want ooMon-algebras to be invariant under equivalences. In this section
we give a general class of operads called cofibrant, and we show that algebras
for cofibrant operads are invariant under equivalences. We will later show that
ooMon is cofibrant.

We mostly follow an article by Berger and Moerdijk [2], in which they
prove (in a set-theoretic foundation) that the category of operads in a suit-
able monoidal model category is itself a model category. So for example we can
study the homotopy theory of topological operads! Their results require some
adaptations to our context, of course because we use different foundations but
also because types do not form a model category.

17



4.1 Homotopical structure on operads

These first definitions are very natural.

Definition 4.1. A morphism of operads is called a fibration (respectively trivial
fibration, equivalence) if its underlying natural transformation is a family of
fibrations (respectively trivial fibrations, equivalences).

Similarly an operad P is called fibrant if P(A) is fibrant for all A: FOSet.

Now we define cofibrant operads.

Definition 4.2. Let P be an operad. Then P is called cofibrant if for all trivial
fibration of operads p from Ri to Ro with Ra fibrant and for all morphism of
operads v from P to Ra, there exists a morphism of operads from P to R4
making the following triangle commutes:

R1

1
,
s
,
,

-

PT>R2

Remark. There always exists a natural transformation making this triangle
commutes, the point is that it should be a morphism of operads.

4.2 The cocylinder factorisation for operads

In this section we show that cofibrant operads have a weak lifting property
against equivalences between fibrant operads.

Lemma 4.3. Assume given a morphism « between fibrant operads. Then it
factors as a section of a trivial fibration followed by a fibration. Moreover if a
18 an equivalence, the fibration is trivial.

Proof. We use the factorisation for types of Lemma [2.26] pointwise. One shows
by direct calculations that the obtained natural transformation carries an op-
erad structure such that all involved natural transformations are morphisms of
operads. O

Lemma 4.4. Let P be a cofibrant operad and assume given an equivalence
between fibrant operads Ry and Ro. Then given a morphism from P to Ra, one
can build a morphism from P to Ry.

Proof. This is immediate using Lemma [4.3 O

Note that the triangle obtained by the lifting of Lemma[4.4]does not commute
strictly, but only up to homotopy.
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4.3 Endomorphism operad of a map between types

We want to show that if X and Y are equivalent fibrant types, P is a cofibrant
operad and Y is a P-algebra then so is X. Unfolding the definition of algebras,
one need to build a morphism of operads from P to Endyx using a morphism
from P to Endy. So we have to provide a link between the operads Endx and
Endy from a map f: X — Y. This will be done using the next construction.

Lemma 4.5. Assume given a map f: X — Y. Then we can define an operad
Endy as follows:

e For A:FOSet, we define Ends(A) as:
Y(er:Endx (A))(ca: Endy (A)). foecg = Ah.ca(f o h)

This carry an obvious structure of functor inherited from the ones of Endx
and Endy .

e We define idgna, : Endy(1) as (idgnay,idenay ) together with the obvious
proof of equality.
e Composition is defined component-wise using Yendy 0nd Yendy -

Then the projections from Endy to Endyx and Endy are morphisms of operads.

Proof. A straightforward calculation shows that this defines an operad, using
the uniqueness of identity proofs. The projections are morphisms of operads by
definition. O

We call Endy the endomorphism operad of f. Up to isomorphism, an element
in Endg(n) consists of two n-ary operations ¢ : X™ — X and ¢: Y™ — Y, such
that for all z1,---,z, : X we have:

f(1/1(1‘1, T ,.I’n)) = 90(]0(371), T ’f(xn))

This is reminiscent of the definition of morphism between algebras. In fact one
can easily show that given (X, ex) and (Y, ey ) two P-algebras, f: X - Y isa
morphism of P-algebras if and only if ex and ey factor through Endy.

Definition 4.6. Assume given two types X and Y. Then for A:FOSet we
define Endx y (A) as:
A= X)—-Y

This defines a functor from FOSet to types.
Note that Endx,y does not have an operad structure.

Lemma 4.7. Assume given a map f: X — Y.
Then the following square is a pullback of natural transformations:

Endy —— Endx

S

Endy T 5ndX’y
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where:
e fi(c1) is focy.
o f*(c2) is Ah.ca(f o h).
e wx and wy are the projections. O

Now we have a way to link Endx and Endy using f: X — Y.

4.4 The case of trivial fibrations

In this section we want to show that given a trivial fibration between fibrant
types f: X — Y and a cofibrant operad P, we have that X is a P-algebra if
and only if Y is a P-algebra. To do this we use the endomorphism operad of f.

Lemma 4.8. Assume given a trivial fibration between fibrant types f: X — Y.
In the pullback diagram of Lemma[]. 7

Endy X Endx

S

Endy 4)}0* SndX,Y

we have that:
o Ty is a trivial fibration of operad with fibrant base.
o wx is an equivalence between fibrant operads.

Proof. First we see by induction on the size of A : FOSet that for any fibrant
type X, the type A — X is fibrant. From this it is immediate to conclude that
Endx, Endy and Endx,y are fibrant.

e The fibre of f, over h: (A — X) — Y is strictly isomorphic to:
(:A— X) — fibreg(h(z))

This type is fibrant and contractible because f is a trivial fibration and
A — X is fibrant. Then 7y is a trivial fibration because it is the pullback
of f..

e We know that Endx is fibrant and since my is a fibration and £ndy is
fibrant, Endy is fibrant. So in order to show that mx is an equivalence, it
is enough to show that f,, my and f* are, by the two-out-of-three property
of equivalences between fibrant types. We already know that f. and my
are equivalences, and so is f* by direct calculation. O

So we have a strong link between Endx and Endy when we have a trivial
fibration between fibrant types f: X — Y. We now use this link.
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Lemma 4.9. Assume given a trivial fibration between fibrant types f: X —Y
and a cofibrant operad P.
If Y is a P-algebra, so is X.

Proof. We have a morphism ey from P to Endy. But since 7y is a trivial fibra-
tion of operads with fibrant base by Lemma [1.8] we can lift ey to a morphism
from P to Ends. So we have a morphism form P to Endx by composition with
TX . O

Lemma 4.10. Assume given a trivial fibration between fibrant types f: X —'Y
and a coftbrant operad P.
If X is a P-algebra, so is Y.

Proof. We have a morphism ex from P to Endx. But since mx is an equivalence
between fibrant operads by Lemma [£.8] we can lift ex to a morphism from P to
Endy using Lemma@ So we have a morphism from P to Endy by composition
with my. O

Remark. Lemmal{.9 produces an algebra structure such that f is a morphism
of algebras, but not Lemma [{.10. This comes from the fact that the lifting of
Lemma [[) does not commute strictly. Nevertheless it commutes up to homo-
topy, and in Lemma f is a morphism of algebra up to homotopy, in a
sense we do not make precise.

4.5 Invariance under equivalence of algebras for a cofi-
brant operad

We are now ready to prove the main theorem of this section.

Theorem 4.11. Assume given a cofibrant operad P and an equivalence between
two fibrant types X and Y. Then if Y has a P-algebra structure, so does X.

Proof. We use the factorisation of Lemma [2.26] on the equivalence between X
and Y in order to obtain two trivial fibrations, and then we use Lemmas
and .10 to conclude. O

5 The operad coMon

In this section we give a definition of the operad coMon. We use ideas from
another article by Berger and Moerdijk [3], where a cofibrant replacement is
constructed for operads in a suitable model category. We apply a variant of this
construction to the operad for strict monoids.

In fact our construction can probably be generalized to any operad, again
following [3], so that any algebraic notion defined by an operad can be defined
up to coherent homotopy.
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5.1 Non-functorial operads with partial compositions

In this section we give an alternate definition of operad, which will be used to
define coMon. It is based on two ideas:

e On one hand, it was already explained that operads can be defined as
families indexed by N rather than functors from the groupoid of finite
totally ordered sets.

e On the other hand, rather than axiomatizing the composition of an n-
ary operation with n operations, one can axiomatize the so-called partial
compositions of a n-ary operation ¢ with another operation. There are n
such partial compositions, one for each input of c.

Definition 5.1. A non-functorial operad with partial compositions consists of:
o A family of types P : N — Set.
o An identity idp : P(1).

e Some partial compositions — o, _:P(m) = P(n) = P(m+n—1) for any
m,n:N and k: Fin(m).

such that:
e For alln:N, k:Fin(n) and ¢: P(n), we have:

copidp =¢
e For allm:N and c¢:P(n) we have:
idpogc=c

e Foralll,m,n:N and k1 :Fin(l) and ka:Fin(l+m—1) together with c¢1:P(1),
¢z : P(m) and cs : P(n) we have:

1. If ko < kq then:
(c1 0k, €2) Ok, €3 = (C1 Ok, €3) Oky4n—1 C2
2. If k1 < ks < k1 +m, then:
(€1 0k, C2) Ok, €3 = €1 Ok, (C2 Oky—ky C3)
3. If k1 +m < ko then:
(€1 0k, €2) Ok, €3 = (€1 Oky—m+1 C3) Ok, C2

Note that we have omitted all the transports along strict equalities in N. We
will often write _ o _ instead of _ o _, omitting the index.
We draw c¢: P(n) as:
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W

and we draw the partial composite ¢; o ¢y as:

3.

Then the equalities 1, 2 and 3 state that the two interpretations give the
same result, so that we are indeed allowed to write partial compositions this way.
Now we give the straightforward definition of morphisms between non-functorial
operads with partial compositions.

Definition 5.2. A morphism between two non-functorial operads with partial
compositions P and Q is a family of map o, : P(n) — Q(n) such that:
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e ay(idp) =idg
e For allm,n:N, k:Fin(m) and ¢, : P(m), ca: P(n), we have:
Umn—1(c1 0k €2) = am(c1) ok ap(c2)

The proof of the next lemma is very sketchy, but the result is well-known.

Lemma 5.3. The category of non-functorial operads with partial compositions
s equivalent to the category of operads.

Proof. There is a clear notion of non-functorial operads with total composition,
which are families P : N — Set such that:

e We have id : P(1).
e Assume given:
— n:Nand s : N for all k: Fin(n)
— ¢:P(n) and ¢ : P(sg) for all k: Fin(n)
Then we have:

’Y(C; Coy " acnfl) ZP(SO + -+ Sn71)

Of course v and id are supposed to respect the obvious associativity and
unit axioms.

There is an equivalence between non-functorial operads with total composi-
tion and operads, essentially defined from the equivalence between the groupoid
of finite totally ordered sets and the category with N as object and only identities
as morphisms.

Now we just need to give an equivalence between non-functorial operads
with partial and total compositions. To do this we define partial compositions
from a total one, and vice-versa.

e From a total composition v we can define ¢; o co as:
~v(e1;id, - -+ ,id, ea,id, - - - id)
with co at the k-th place.
e From partial compositions — o _ we can define y(c;co, -+ ,c,—1) as:

(' T ((C On—1 Cnfl) On—2 cn72) T ) %0 Co

A straightforward but lengthy calculation shows that this construction preserves
the axioms of operads, and that it interacts well with morphisms. O

From now on we will call non-functorial operads with partial composition
simply operads. This is justified by Lemma
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5.2 Definition of labelled trees
We define two operads, using the equivalent definition from the last section.

Definition 5.4. We define the inductive type Tree with the following construc-
tors:

o leaf : Tree
e cons: (n:N) — (Fin(n) — Tree) — Tree

Definition 5.5. We define Tree(n) as the type of trees with n leaves. This has
an operad structure induced by the grafting of trees.

We define the internal vertices of a tree as its cons constructors which are
not at the root.

Definition 5.6. We define a labelled tree as a tree together with a map from
its internal vertices to 1. We denote the type of labelled trees by LTree.
For any n: N, we define LTree(n) as the type of labelled trees with n leaves.

We will often omit the labeling of a tree in LTree from notations.
For ¢ : LTree, we can define its graphical representation draw(t) as follows:

draw(leaf) is 0.

draw(cons(ty, ..., t,)) is:

draw(t;) -+ drawy(¢,)

~7

draw (leaf) is a blank space. Note draw is only applied to subtrees, so
there is no tree drawn as a blank space.

draw (cons(t1, ..., tp)) is:

drawy (1) -+ drawy(t,)

hod

where ¢ is the label of the corresponding internal vertex.

Remark. The three labelled trees:

° 0 °

should not be confused. They correspond to cons(1, A_.leaf), leaf and cons(0, \())
(where A() is the unique function out of Fin(0) to anything).
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Definition 5.7. We denote by ., the element:
cons(n, A_. leaf) : LTree(n)

For example s is the tree:

N\

Note that for any n : N, the tree u, has no internal vertex.

Lemma 5.8. Assume given two labelled trees t1 and to different from leaf, then
there is a new internal vertex in ti oty coming from the root of ts.

The family of types LTree(n) for n: N carries an operad structure, with
partial compositions defined using the grafting of trees with any new internal

vertex labelled by 1.
[}

with itself at its right leaf, we obtain:

So for example if we compose:

Similarly po og s is:

%
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5.3 A rewriting on labelled trees

We call a binary relation _ R_ on a type X a rewriting on this type. The
intuition is that * Ry means that x rewrites in one step to y.

In this section we define a rewriting on labelled trees, and state some of its
properties.

Remark. There are no proofs in this section. They consist essentially of a
verification for all the possible cases. It is here that we use all our assumptions
on the connections on L.

Definition 5.9. For n:N, we define a rewriting — — _ on LTree(n) as follows:

U U,

ty o tk—1 our o Up lgpr iy

t tn

ti e tn

Lemma 5.10. Assume given ti,to : LTree.
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o Ift) —t] thenty oty — t] ots.
o Ifty > th then tq oty — £y oth.

In the language of rewritings, the next lemma states that _ — _ is strongly
confluent.

Lemma 5.11. For t,t' : LTree, we write t —<1 t’ to say that t — t' ort =1t'.
Assume given t,ty,ts : LTree such thatt — t1 and t — to. Then there exists
t3 : LTree such that t1 —<1 t3 and to —<1 3.

Lemma 5.12. Assume 0 # 1 in I. For all t1,ts : LTree such that t1 oty — t3
one of the following is true:

o [Lither t1 — t} with t3 =t} ots.
e Otherwise to — th with t3 = t1 o t},.

The condition 0 # 1 in I is necessary for the result to hold, otherwise:

M2 O po > U3

but po does not rewrite, i.e. there is no ¢ such that us +— t. It is reasonable
to assume 0 Z 1 in I, for example it is implied by the univalence of the fibrant
universes. Nevertheless if we assume 0 = 1, then homotopy equivalences are
isomorphisms, and loop spaces are singletons, so all our theorems become trivial.
Therefore it is somewhat unsatisfying that we have to require this hypothesis
here.

Next we introduce a construction on labelled trees using the connection _A_.

Definition 5.13. For any labelled tree t and i:1, we define a labelled tree i A\t
by applying i A _ : 1 — 1 on the label of each internal vertex of t.

So fo example if we denote by t the tree:

y
g
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Lemma 5.14. Assume given t,t' : LTree such that t — t'. Then for any 1 :1,
we have i Nt — i AT,

5.4 Definition of coMon

Given any type X and any binary relation R on X, it is possible to define the
type-theoretic quotient of X by R. It is isomorphic to the quotient of X by the
equivalence relation generated by R. These quotient types are not present by
default in Agda, so we postulate them.

Now we can define the operad coMon as a quotient of LTree.

Definition 5.15. The quotient of LTree(n) by — — _ is denoted by coMon(n).
For t: LTree(n) we denote by [t] its image in ocoMon(n).

Recall that our goal is to define monoids up to coherent homotopy as coMon-
algebras. So for example, the image of [u,] in an coMon-algebra will be called
the canonical multiplication of n elements. We define composition using 1 as
a label, whereas we quotient every trees with labels 0, so that in any ooMon-
algebra we have that:

e On one hand there is a path from a canonical multiplication to any com-
position of canonical multiplications with the suitable number of inputs
(this will be proven in Lemma [5.17]).

e On the other hand if 0 #Z 1 (as implied by univalence), such composition
is not strictly equal to the canonical multiplication.

Remark. Note that Tree, LTree and ooMon are not fibrant. This is not a
problem because we want to build coMon-algebras, which are maps out of coMon.

Now we show that the partial compositions in LTree induces partial compo-
sitions in coMon.

Lemma 5.16. The operad structure on LTree induces an operad structure on
ocoMon.

Proof. The fact that partial compositions of labelled trees factors through quo-
tient is a direct consequence of Lemma [5.10 O

Now we prove the first important property of coMon.
Lemma 5.17. For any n: N, the type coMon(n) is contractible.

Proof. The type ooMon(n) is inhabited by [u,]. Assume given [¢] : coMon(n),
then we need a path from [u,] to [t]. We define p; : T — coMon(n) as Ai. [i A t].
But p(0) = [uy] and pi(1) = [t], so this gives the desired path.

Now we need to show that if ¢ — ¢/, we have p; = py, so that we indeed
have a proof of contractibility of coMon(n). But this is a direct consequence of
Lemma 514 O
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5.5 Sections of strongly contractible morphisms over coMon

In this section we will show the key property of coMon, which will be sufficient
to imply the other results we want. First we need to define strongly contractible
morphisms.

Definition 5.18. We define 6 : 1 — 1 as the inclusion of the type with two
points in 1 given by the endpoints 0 and 1.

For k:N we define §;,:01F — I¥ as the iterated pushout-product of §:01 — 1,
i.e.

o 5y : 010 = 10 is the unique map form L to T.
o Opyq: OTFHL 5 TFF1 s the map 6, 06.
Intuitively dy in the inclusion of the border in the k-dimensional cube.

Definition 5.19. A map between types is called strongly contractible if it has
the right lifting property against 6y, : 01F — I* for all k : N.

A morphism of operads is called strongly contractible if its underlying natural
transformation is a family of strongly contractible maps.

It is easy to check that a strongly contractible map is contractible (i.e. it
has contractible fibres), but the converse is not true without some fibrancy
hypothesis. Firstly it is possible to fill any cube in the fibres of a strongly
contractible map, whereas it might not be possible to fill any cube in a non-
fibrant contractible type. Secondly the lifting property of strongly contractible
maps guarantee a correspondence between its fibres over points linked by a path.
This correspondence is not here for a contractible map with non-fibrant base.
We will see later that a fibration with fibrant base is contractible if and only if
it is strongly contractible.

Now we give the key property of coMon. Its proof is quite involved, but the
result can be efficiently used as a black box.

Theorem 5.20. Let P be an operad. Then any strongly contractible morphism
of operads from P to coMon has a section which is a morphism of operads.

Proof. Let us denote by 8 the given morphism from P to coMon.

For n,k : N we denote by LTreex(n) the type of labelled trees with n leaves
and at most k internal vertices. We denote by LTree; the type of trees with
at most k internal vertices. Note that _ +— _ strictly decreases the number
of internal edges of a tree, so it restricts to a rewriting on LTreey(n) which we
denote by _ +— _ as well.

By induction on & : N we define ay, : (n: N) — LTreex(n) — P(n) such that:

0. agy1 extends ag.

1. For all ¢ : LTree, we have S(ax(t)) = [t].
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2. For any tq,ts : LTree such that t; o t5 : LTreey, we have
a(ty ota) = ag(tr) o ag(tr)
Moreover oy (idiryee) = idp.
3. For any t1,ts : LTreey, if t1 — to then ag(t1) = ag(ta).

From this we can conclude. Indeed, we first define @ from LTree to P as the
union of the ag. Point 2 implies that « is a morphism of operads and point 3
implies that « factors through coMon. Then point 1 shows that the factored
morphism is indeed a section of 5.

When £ is 0, we just need to define the image of p,, in P(n) for all n: N, and
the image of leaf. This is done using the fact that the fibres of 5 are inhabited
by the left lifting property against d5:91° — I°. We have to be careful to define
the lifting of p; and leaf to be idp.

Assume given such an oy, for k: N, we want to extend it as aj41. Assume
given t : Tree with k + 1 internal vertices and n leaves, seen as a map ¢ :I¥t1 —
LTreeyt1(n). We want to define ax,; on #(z) for all z : T+,

If the unlabelled tree ¢ has a unary vertex, then we know t(z) — t'(z) for any
x : I¥*! by a reduction eliminating this unary vertex. So we define a1 (t(z))
as ag(t'(x)). This does not depend on the choice of reduction by Lemma
and hypothesis 3.

Otherwise the tree has no unary vertex. We define v;: 9I1¥ — P(n). Assume
given z : OT1F, then if one of its component is 0 we have t(z) — t'(x). So we
define v;(x) as ay(t'(x)). Otherwise one of the component of z is 1, and ¢(x) is
t1(x)ota(x). We define vy () as ax(t1(z)) o o (t2(x)). To show that this defines
amap v, : dIF1 — P(n), we need to show that both definitions agree when two
components of x are equals to 0 or 1. We have three cases:

e If there are two Os in z:1¥*1, then we have t(z) + t;(z) and t(z) > ta(z).
We need to check that ag(t1(z)) = ax(t2(x)), but this is the case by
Lemma and hypothesis 1 on «ay.

e Ifthereisa 0 and a 1in x:1¥*! then t(z) = t1(z) oty (x) and t(z) > t3(z).
But by Lemma we have for example that t3(x) = t](x) o to(x) with
t1(z) — t)(x). Then we have:

ag(ti(z)) o ar(tz(x)) = a(ty (2)) 0 an(ta(z))
= ap(ty(z) o t2(x)) = an(ts(@))
e If there are two 1s in z : I**1, then we have for example:
H) = 1 (@) o (ta(2) 0 15(2)) = (11(x) 0 12()) o ta(x)

But then:

ar(ti(@)) 0 ap (t2(x) 0 1s(2) ) = ar(ta(@)) © (an(ta(@)) 0 anlts(x)))
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= (ar(t1(@) 0 ar(ta(2))) 0 an(ts(2)) = ar (11 (@) 0 t2() ) © an(ts ()
by hypothesis 3 on aj, and the operad equations in P.

Then we we check that we have a commutative square:

It —— P(n

)
5{ s
I* FvT ocoMon(n)

Indeed either v(z) has been defined as ay(t'(x)) with t(x) — t'(z), in which
case we can conclude by hypothesis 1 on ay. Otherwise ¢(z) = t1(x) ota(x) and:

Blun(e)) = 6wl (2)) 0 a(t2(2)) ) = Blan(tr) o Blar(tz))
= (@) 0 [t2(2)] = [1(2) 0 ta(@)] = [1(2)]

so the square commutes.

But since 3 is strongly contractible, we can extend v; to V; : I¥ — P(n)
making the two triangles commute. Then we define a1 (¢(x)) as Vi(x). So we
have an extension a1 of oy to LTreeg 1.

Now we check that a1 satisfies the desired properties.

1. Assume t is an unlabelled tree with k + 1 internal vertices, and x : I¥t1.

Then f(ak+1(t(2))) = B(Vi(2)) = [t(z)]

2. Assume t is a labelled tree with k + 1 internal vertices and t = t; o ta.
Then if ¢t does not contain a unary vertex, by definition:

Ozk+1(t) = Ozk(tl) o Ozk(tg)

Otherwise t1 o t3 + t3 through a unary rule, and ag41(t) = ag(ts). By
Lemma we have for example t; — ¢} and t3 = ¢} o to. Then:

ag(tz) = ap(t] ots) = ag(t)) o ay(ta)
by hypothesis 2 on a. But then by hypothesis 3 on «a; we have:
ag(th) o ag(tz) = ax(t) o ax(ts)
so we can conclude.

3. Assume that ¢ is a tree with k+1 internal vertices. Assume ¢t — ¢’ through
a rule eliminating a unary vertex. Then ay1(t) = ag41(t’) by definition.
Otherwise we conclude using Lemma and hypothesis 3 for ay.

O

The last theorem means that if we can extend any section over 9I* of a
morphism /3 from P to coMon to a section over I*, then we can obtain a global
section of 8 which is a morphism of operads. To sum up the situation, there
is as little as possible strict equalities between compositions in coMon, so it is
easy to build morphism out of it.
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6 Properties of coMon

In this section we show that ocoMon is cofibrant and that it acts on loop spaces.
In fact we only use Theorem [5.20 so that any operad obeying this result will
be cofibrant and acts on loop spaces.

6.1 Cofibrations and pseudo-cofibrations

In algebraic topology cofibrations are well-behaved inclusions of subspace. In
this section we introduce two reasonable definitions of cofibrations in our con-
text. It seems likely that the two definitions are incomparable without further
hypothesis, and both are useful. We will show that the maps 6 : 01 — I* are
examples of both.

Definition 6.1. A map is called a pseudo-cofibration if its pullback-exponential
with any fibration is again a fibration.

Definition 6.2. A map is called a cofibration if its pullback-exponential with
any trivial fibration with fibrant base is again a trivial fibration with fibrant base.

Recall that a section of the pullback-exponential of two maps u: A — B and
p: X — Y shows that any local section of p over A can be extended to a local
section over B. So assuming well-behaved pullback-exponentials with u: A — B
has something to do with the ability to extends maps out of A to B, justifying
the intuition that a (pseudo-)cofibration is a well-behaved inclusion.

We give two auxiliary lemmas on cofibrations and pseudo-cofibrations. The
proofs are the same in both cases, and can be extended to any class of maps
defined in a similar fashion.

Lemma 6.3. The unique map L. — T is a cofibration and a pseudo-cofibration.

Proof. One can check that for any map p, the map ((L — T)/p) is isomorphic
to p. ]

Lemma 6.4. The pushout-product of two cofibrations (respectively two pseudo-
cofibrations) is again a cofibration (respectively a pseudo-cofibration).

Proof. This is a direct consequence of Lemma [2.25 O

Now we show that 0, : 9IF — IF is a cofibration and a pseudo-cofibration.
For these results we will need to use the details of the homotopical structure of
our universe. First we give an auxiliary lemma, which is easy to prove.

Lemma 6.5. Assume given a map f:X — Y, then the map (§/f) is isomorphic
to the obvious map from:

X(¢g:I—=Y).(i:I) — fibres(g(4))

to
Y(¢:1—-Y).fibres(g(0)) x fibres(g(1))

33



Moreover the fibre of this map over ¢:1 —Y, x:fibres(¢q(0)) and y:fibres(q(1))
1s isomorphic to the type:

S(p: (i:1) — fibreg(q(i)))- (p(0) = z) x (p(1) = y) O
Lemma 6.6. For k:N, the map 6 : 01F — I* is a pseudo-cofibration.

Proof. By Lemmas and it is enough to prove that 6 : 01 — 1 is a
pseudo-cofibration. Assume given a fibration f: X — Y.

By Lemma it is enough to prove that for any ¢: I — Y, x : fibres(g(0))
and y : fibres(g(1)), the type:

S(p: (i:1) — fibreg(q(4))). (p(0) = 2) x (p(1) = y)
is fibrant. This is true by the definition of the interval. O
Lemma 6.7. For k:N, the map 0y, : 01F — I* is a cofibration.

Proof. By Lemmas [6.3] and [6.4] it is enough to prove that § : I — I is a
cofibration. Let f: X — Y be a trivial fibration with fibrant base.
First we prove that the base of (§/f) is fibrant. By Lemma[6.5] it is isomor-
phic to:
Y(p:I1—Y).fibres(p(0)) x fibres(p(1))

so it is enough to show I — Y fibrant in order to conclude. But I — Y is
isomorphic to:
Y(xyy:Y).z~y

which is assumed fibrant.

Now we prove that (6/f) is a trivial fibration. By Lemma it is enough
to show that for any path ¢:I — Y and any « : fibres(¢(1)) and y : fibres(¢(0)),
the type:

S(p: (1) - fibrey (¢())). (p(0) = @) x (p(1) = )

is contractible. By lemmal6.6] we know that it is fibrant. But since contractibil-
ity of a fibrant type is a fibrant type, we can use path elimination and assume
that ¢ is Mi.z for z:Y. In this case we need to show that for any z,y : fibres(z)
the type = ~» y is contractible, but this is true by Lemma [2.18 O

6.2 ooMon is cofibrant

In this section we show that coMon is cofibrant.

Lemma 6.8. The pullback of a strongly contractible morphism of operads is
strongly contractible.

Proof. Since both strongly contractible morphisms and pullbacks of operads are
defined pointwise, it is enough to show the property for maps between types.
Being strongly contractible for maps is defined by a right lifting property, so we
can conclude using Lemma [2.21] O
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Lemma 6.9. A trivial fibration with fibrant base is strongly contractible.

Proof. Assume given a trivial fibration with fibrant base p. Then by Lemma
it is enough to show that (dx/p) has a section, but this map is a trivial
fibration by Lemma O

Theorem 6.10. coMon is cofibrant.

Proof. Assume given two operads R and Ro with Ry fibrant, together with a
trivial fibration of operads § from R; to R and a morphism « from coMon to
Ro. Then we consider the pullback square:

ooMon X R, Rl — Rl

ﬂl JB
ocoMon ———— Ry

We know that 3 is strongly contractible by Lemma and then so is 7 by
Lemma So by Theorem the morphism 7 has a section denoted u and
eou is a lifting of o through f. O

6.3 Loop spaces are coMon-algebras

Recall that a fibrant loop space is a type x ~» x with x: X for X fibrant. In this
section we show that coMon acts on fibrant loop spaces. The intuitive idea is
that we define the canonical multiplications of paths by path induction as hrefl,
and then we build all the coherence conditions inductively on their dimension,
defining them by path induction as hrefl. We make this vague argument precise.

First we derive from Theorem a way to build maps rather than sections
out of coMon. We need an auxiliary definition.

Definition 6.11. A type X is called strongly contractible if for any k : N and
map u: OIF — X there exists a dotted arrow making the following triangle
commutes:
o —“— X
X
L

An operad P is called strongly contractible if P(A) is strongly contractible for
any A : FOSet.

We show how to build morphisms of operads out of coMon.

Lemma 6.12. Assume P is a strongly contractible operad. Then there is a
morphism of operads from coMon to P.

Proof. We consider the morphism of operads coMon x P — coMon. It can be
checked that it is strongly contractible, so by Theorem it has a section.
But the composite of this section with the projection to P gives the required
morphism. U
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Now it is enough to build a strongly contractible operad P with a morphism
from P to Endy., for x : X with X fibrant. Recall that we want to define all
coherences as hrefl by path induction, but it is not possible to define a function
out of x ~» x in such a way. So it is natural consider functions defined on
strings of composable paths, and we define the type of such strings. We need
some auxiliary definitions on finite totally ordered sets.

Definition 6.13. We denote the smallest (respectively greatest) element of A :
FOSet as min (respectively max).

Definition 6.14. Assume given A :FOSet, we define:

e S(A) :FOSet as A Il T seen as a finitely ordered set with the unique
element of T larger than all elements of A.

e We define inco: A — S(A) as the obvious inclusion.

e For a: A, we define inci(a) : S(A) as the successor of a if a < max, and
we define incy (max) as the unique element of T.

Definition 6.15. Assume given a type X and A : FOSet, then we define the
type A — Pathx as:

S(f:9(A4) = X).(a: A) = f(inco(a)) ~ f(inci(a))

We have maps:
co,c1: A—Pathy — X
with co(f,—) defined as f(min) and ci(f,—) defined as f(max).
Moreover for any = : X we define:
hrefi : A — Pathyx
as (A_.x, \_.hrefl,).

So A —Pathy is the type of strings of A composable paths, cq gives the first
point of the first path in the string and c; give the endpoint of the last path
in the string. We state the generalized version of path induction for strings of
composable paths.

Lemma 6.16. Assume given C a family of fibrant types indexed by A — Pathx
for X fibrant and A : FOSet.
Assume given d: (x: X) — C(hrefl?), then we have:

Ja(d): (p: A—Pathx) — C(p)
Moreover for any x: X we have Ja(hrefi?) = d(z). O

We are ready to build the desired operad. We want to consider functions
defined on strings of composable paths using path induction, and only those.
This justify the following definition.
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Definition 6.17. For any type X and A :FOSet, we define Pathx(A) as the
type of functions:

¢:(p: A—Pathx) = co(p) ~ c1(p)
such that for all x: X we have gp(hreﬂf) = hrefl, .

Lemma 6.18. The functor Pathx carries an operad structure. Moreover for
any x : X there is a morphism of operads from Pathx to Endg.. . .

Proof. First we define an operad structure on the functor sending A : FOSet to:

(p: A—Pathx) = co(p) ~ c1(p)

To define composition we use the same idea as for End,...., except that we have
to be careful about the endpoints of paths. We omit the precise proof. Then it
is easy to check that this induces an operad structure on Pathx.

There are maps from A — = ~ z to A — Pathx given by Af. (A_.z, f).
Restrictions along these maps give a morphism of operads from Pathx to
Endgy. O

Now we show that Pathx is strongly contractible. It is reasonable to expect
so because there should be up to homotopy a unique map:

w:(p: A—Pathx) = co(p) ~ c1(p)

such that ¢(hrefi) = hrefl, for any 2: X, which is the one defined using Lemma
0. 16l

We prove the generalisation of the desired lifting property for any pseudo-
cofibration.

Lemma 6.19. Assume given a fibrant type X, a pseudo-cofibration u: A — B
and C : FOSet together with a map ¢ : A — Pathx(C). Then there exists a
dotted arrow making the following triangle commutes:

A —— Pathx(C)

B
Proof. Assume given for any a: A a map:
¢va: (p: C —Pathyx) — co(p) ~ c1(p)

such that for all z: X we have o, (hreflS) = hrefl,. First we want to extend ¢
to B. It is enough to define for any p: C — Pathx a map:

Y(p): B — co(p) ~ c1(p)

such that for any a : A we have ¥(p,u(a)) = pa(p)-
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But since the path types in X are fibrant, and v: A — B is a pseudo-
cofibration, the type of maps extending Aa.¢,(p) to B is fibrant. So by Lemma
it is enough to define ¥ on hreﬂf for any x : X. In this case we just need
to extend the constant function with value hrefl, on A to B. We do this using
the constant function.

Now we need to show that the for any b: B the obtained maps:

vp: (p: C —Pathx) — co(p) ~ c1(p)

have value hrefl, on hreﬂg for any x : X. But this is true by the computation
rule of Lemma [6.106] O

Now we are ready to show that fibrant loop spaces are coMon-algebras.
Theorem 6.20. Any fibrant loop spaces is an coMon-algebra.

Proof. By Lemma6.6) we know that 0z : 1% — I* is a pseudo-cofibration for any
k:N, so by Lemmal6.19|the operad Pathx is strongly contractible. Therefore we
have a morphism from coMon to Pathx by Lemmal6.12] which gives the desired
algebra structure by composing with the morphism from Pathx to Endy.., of
Lemma [6.18 O

We reassemble the pieces.

Theorem 6.21. The operad coMon acts on any fibrant type equivalent to a
fibrant loop space.

Proof. By Theorem we know that coMon acts on & ~» z for : X and X
fibrant. But we also know that it is cofibrant by Theorem [6.10} and hence that
its algebras are invariant under equivalences between fibrant types by Theorem

{11l O

This supports the claim that coMon-algebras are monoids up to coherent
homotopy.

7 Conclusion

We defined oco-monoids in two-level type theory, and show some basic properties
about them. We expect that these results can be transferred to some geometric
settings (at least in simplicial and cubical sets). We believe this work illustrate
how convenient two-level type theory can be, by allowing to internalize model-
categoric methods to type theory. To my knowledge our proof that loop spaces
are oco-monoids is new. It is based on the type-theoretical idea that every coher-
ence is built as a reflexivity using path induction, and it would be interesting
to see how it can be formulated in the usual geometric langage.

The most natural and interesting way to extend our results would be to prove
that any group-like co-monoid is equivalent to a loop space. This would require
univalence of the universes of fibrant types. A straightforward approach of
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this problem would require to develop geometric realization of simplicial types,
which is an interesting project in its own right.

Our work also has some limitations, most notably the choice of using two-

level type theory. Indeed plain homotopy type theory can be interpreted in
a large class of models called higher topoi, whereas it is not known whether
two-level type theory admits such a rich semantic. This makes our proof less
interesting to geometers. For type theorists, the problem of defining co-monoids
(and more generally higher algebraic structures) in plain homotopy type theory
is still wide open, and we do not claim any progress toward this goal.
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