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Abstract

We present an article by Joyal and Tierney [8]. It builds two Quillen
equivalences between the Joyal model structure on simplicial sets and the
Rezk model structure on bisimplicial sets.
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1 Introduction

This document presents an article by Joyal and Tierney [8]. It is about some
formalisations of the notion of (∞, 1)-category. We now give some intuitions
about this notion.

First we introduce ∞-groupoids. It is possible to associate to a space the
collections of its points, paths, homotopies between paths, homotopies between
these homotopies, and so on. These collections inherit a lot of structure from
the space. The notion of ∞-groupoids should axiomatize this structure. There-
fore an ∞-groupoid has some objects, some morphisms between objects, some
morphisms between morphisms between objects, and so on. It also has identities
and some composition laws for morphisms. The correspondence between these
categorical and topological concepts is summarised in the following figure.

Topological space ∞-groupoid
point object
path morphism

homotopy morphism between morphisms
constant path or homotopy identity morphism

concatenation of paths or homotopies compostion law

Since paths and homotopies can be travelled backward, it is required that
morphisms are invertible up to higher morphisms, i.e. for any morphism α :
f → g there exists a morphism β : g → f together with higher morphisms
h1 : idg → α ◦ β and h2 : β ◦ α→ idf . In this case α is said weakly invertible.

Moreover it is required that some rules hold up to coherent homotopy. It is
this notion of coherent homotopy which is hard to formalise. For example an
∞-groupoid should have some weakly invertible morphisms αf,g,h : (f ◦g)◦h→
f ◦(g◦h) for any composable morphisms f , g and h. Moreover these morphisms
should obey to the pentagon law, i.e. the following diagram should commute
up to a higher morphism :

((f ◦ g) ◦ h) ◦ i

(f ◦ g) ◦ (h ◦ i) (f ◦ (g ◦ h)) ◦ i

f ◦ (g ◦ (h ◦ i)) f ◦ ((g ◦ h) ◦ i)

αf◦g,h,i αf,g,h◦i

αf,g,h◦i αf,g◦h,i

f◦αg,h,i
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But these higher morphisms should themselves have some kind coherence
morphisms, and so on.

Then (∞, 1)-categories are the generalisation of ∞-groupoids where we do
not require morphisms between objects to be weakly invertible. Note that we
still require morphisms between morphisms to be weakly invertible. But how
to formalise this notion of (∞, 1)-categories ?

A natural first step is to formalise the notion of ∞-groupoids. This can
be done using a guiding principle in the study of (∞, 1)-categories called the
homotopy hypothesis, which states that ∞-groupoids are equivalent to weak
homotopy types.

This motivates a fundamental insight : the notion of (∞, 1)-category is a
homotopical notion of some sort, and similarly to weak homotopy types it is
best formalised as a category C and a class of morphisms W in C. The idea is
that the homotopy category of (∞, 1)-categories is the category C localised at W
(i.e. the category obtained from C by formally inverting the morphisms in W ).
At this point it should be noted that the homotopy category of (∞, 1)-categories
is badly behaved (as is the homotopy category of weak homotopy types), and
that it is often more useful to consider the (∞, 1)-category of (∞, 1)-categories.
It is also useful to consider the (∞, 1)-category of weak homotopy types, in fact
this is is the main example motivating (∞, 1)-categories.

The notion of model category [11] is an additional structure on a category
C together with a class of morphisms W called the weak equivalences. It allows
to effectively manipulate it, for example to compute the localisation of C at
W . The prime example is the Quillen model structure on simplicial sets, which
represents weak homotopy types (and therefore ∞-groupoids by the homotopy
hypothesis). There is a lot of different formalisations of (∞, 1)-categories as a
model category in the literature. We list some of these model structures :

• Perhaps the most intuitive is the model structure on simplicially enriched
categories considered in [2]. The point of view of this structure is that
an (∞, 1)-category is a category enriched in ∞-groupoids. Note that in
this model the associativity of the composition of morphisms in an (∞, 1)-
category holds on the nose, so this model structure can be interpreted as
a strictification result.

• The most well-known is called the Joyal model structure on the category
of simplicial sets. It emphasises the similarity between (∞, 1)-categories
and∞-groupoids. Results about this model structure are recalled without
proof in Section 2.3.

• There is such a model structure on bisimplicial sets first defined in [12],
which we call the Rezk model structure. This model structure is presented
in Section 4.5.

• Another model structure which is enlightening is the model structure on
relative categories presented in [1]. A relative category is a category C
together with a class of morphism W containing the identities and stable
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by composition. The idea is that a relative category (C,W ) represents the
(∞, 1)-category obtained from the degenerate (∞, 1)-category C by for-
mally inverting W in the world of (∞, 1)-categories. This process is called
simplicial localisation. It can be used to define the (∞, 1)-category of
(∞, 1)-categories from any model structure representing (∞, 1)-categories.

All these model categories represent the same notion of (∞, 1)-category, so
for example they have equivalent localisations and equivalent simplicial locali-
sations. This is implied by the fact that they are all linked by chains of special
morphisms called Quillen equivalences. The main goal of this document is to
present two Quillen equivalences between the Joyal and Rezk model structures.

In any model category we have a notion of fibrant objects, which are well-
behaved objects. We will now give an interpretation of fibrant objects in the
Joyal and Rezk model structure as (∞, 1)-categories. In order to interpret an
arbitrary (bi)simplicial set X as an (∞, 1)-category, one should first choose a
fibrant replacement for X, i.e. a fibrant object weakly equivalent to X. The
fibrant objects in the Joyal model structure are called quasi-categories, and the
fibrant objects in the Rezk model structure are called complete Segal spaces.

A notion which is important in both model structures is the notion of com-
mutative n-simplex in an (∞, 1)-category. A commutative 2-simplex (also called
a commutative triangle) is the data of morphisms f : x → y, g : y → z and
h : x → z together with a higher morphism g ◦ f → h. The commutative
n-simplices are defined similarly with edges being morphims between objects,
surfaces being morphisms between morphisms between objects, and so on.

The Joyal model structure represents (∞, 1)-categories as nice simplicial
sets called quasi-categories. We give some intuitions about this correspondence.
For X a quasi-category, the set X0 represents objects of the (∞, 1)-category
corresponding to X, the set X1 represents its morphisms (with the face maps
indicating sources and targets). Then Xn for n ≥ 2 represents its commutative
n-simplices.

The Rezk model structure is a model structure on bisimplicial sets. To a
bisimplicial set X we can associate its rows denoted by Xm,• and its columns
denoted by X•,n. They are simplicial sets. Let us denote by C the (∞, 1)-
category corresponding to a complete Segal space X. Then X•,0 represents the
space of objects of C, which has the objects of C as points, the weakly invertible
morphisms of C as paths and higher weakly invertible morphisms as homotopies.
Moreover X•,1 is the space of morphisms of C, which has the morphisms of C as
points, weakly invertible morphisms between them as paths (i.e commutative
square with weakly invertible edges), and higher weakly invertible morphisms
as homotopies. Similarly X•,n for n ≥ 2 is the space of commutative n-simplices
in C. Then X•,n for n ≥ 2 is homotopically equivalent to the space of strings of
n composable morphisms in C, since there is a unique way up to homotopy to
fill a string of n morphisms into a commutative n-simplex.

The first Quillen equivalence should be clear from this presentation : to a
bisimplicial set we associate its row X0,•, which has the points of X•,0 as objects,
the points of X•,1 as morphisms, and so on.
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We now present the second Quillen equivalence. We denote by ∆n the stan-
dard n-simplex, and by (∆n)′ the nerve of the groupoid with n+ 1 canonically
isomorphic objects. Let X be a simplicial set representing the (∞, 1)-category
C, then the second Quillen equivalence associates to it the bisimplicial set Y
defined by Y•,m = HomS(∆m × (∆•)′, X). This is indeed a satisfying repre-
sentation of the spaces of objects, morphisms and commutative m-simplices in
C.

We will now present the structure of the proof. The weak equivalences in the
Quillen (resp. Joyal) model structure are called the weak homotopy equivalences
(resp. weak categorical equivalences).

First we build a model structure on bisimplicial sets called the vertical model
structure, where the weak equivalences are the column-wise weak homotopy
equivalences. Then we present the general theory of Bousfield localisations
allowing us to build new model structures on bisimplicial sets with more weak
equivalences than the vertical model structure. We use this to define the Rezk
model structure, in which the intuitions presented earlier are true for fibrant
objects. Then we check that row-wise weak categorical equivalences are Rezk
weak equivalences. From this result it is possible to construct the first Quillen
equivalence, and prove that it is indeed an equivalence by using carefully chosen
fibrant replacements in the Rezk model structure. Then we construct the second
Quillen equivalence and we prove that it is indeed an equivalence using the first
one and the two-out-of-three property of Quillen equivalences.

2 Model structures on simplicial sets

We denote by S the category of simplicial sets. In this section we present two
model structures on S. We call Quillen model structure the structure modelling
weak homotopy types, and we call Joyal model structure the structure modelling
(∞, 1)-categories.

The reader should have a look at Appendix A.1 at this point, it presents the
notions of left and right lifting properties, and the notion of saturated class of
morphisms. He should also have a look at Appendix B.1 which presents model
categories, and at Appendices B.2 and B.3 which present the notions of Quillen
functors and Quillen equivalences.

There is almost no proof in this section, the proofs can be found for example
in [7].

2.1 Some notations for maps of simplicial sets

We denote by δn the inclusion map ∂∆n ⊂ ∆n for n ≥ 0.
We denote by hnk the inclusion map of the k-th horn Λnk ⊂ ∆n for n ≥ 0 and

0 ≤ k ≤ n.
We denote by jn the inclusion map ∆0 ∼= {0} ⊂ ∆n for n ≥ 0.
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We denote by tn the unique map from ∆n to ∆0 for n ≥ 0.
We denote by (∆n)′ the nerve of the groupoid with n + 1 canonically iso-

morphic objects.
We denote by un the inclusion map ∆0 ⊂ (∆n)′ for n ≥ 0. There is a unique

such map up to isomorphism.
We denote by In the union of the segments corresponding to {k, k + 1} for

0 ≤ k ≤ n− 1 in ∆n for n ≥ 2.
We denote by in the inclusion map In ⊂ ∆n for n ≥ 0. We call them the

spine maps.

2.2 The Quillen model structure

In this section we present the Quillen model structure on simplicial sets, which
represents weak homotopy types. By that we mean that there is a Quillen equiv-
alence between the Quillen model structure and a model structure on topological
spaces with weak homotopy equivalences as weak equivalences. This result is
presented for example in the first chapter of Goerss and Jardine’s book [5].

Now we describe this model structure.

Definition 2.1. A Kan fibration is a map which has the right lifting property
against the horns hnk for n > 0 and 0 ≤ k ≤ n.

A Kan complex is a simplicial set K such that the unique map from K to
∆0 is a Kan fibration.

An anodyne extension is a map which has the left lifting property against all
Kan fibrations.

A trivial fibration is a map which has the right lifting property against the
δn for n ≥ 0.

Lemma 2.2. The monomorphisms form the smallest saturated class of mor-
phisms containing the δn for n ≥ 0.

Corollary 2.3. A trivial fibration has the right lifting property against any
monomorphism.

Proof. By Lemma A.5, the class of morphisms having the left lifting property
against the trivial fibrations is saturated. But it contains the δn for n ≥ 0 by
definition, therefore it contains all the monomorphisms by Lemma 2.2.

Lemma 2.4. The anodyne extensions form the smallest saturated class of mor-
phisms containing the horns hnk for n > 0 and 0 ≤ k ≤ n.

Proof. This is a consequence of Lemma A.8.

The category of simplicial sets is a presheaf category, and therefore it is
cartesian closed. We denote by HomS(X,Y ) the mapping simplicial set for X
and Y simplicial sets. This mapping simplicial set will also be denoted by Y X .

We denote by π0 : S → Set the left adjoint to the inclusion of sets in
simplicial sets.
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Definition 2.5. A map of simplicial set f : X → Y is called a weak homotopy
equivalence if for all Kan complex K the induced map :

π0(f∗) : π0(HomS(Y,K))→ π0(HomS(X,K))

is a bijection.

A map of simplicial sets is a weak homotopy equivalence if and only if its
geometric realisation is a weak homotopy equivalence in the usual sense.

Theorem 2.6. There exists a model structure on S called the Quillen model
structure where :

• The weak equivalences are the weak homotopy equivalences.

• The cofibrations are the monomorphisms.

• The acyclic cofibrations are the anodyne extensions.

• The fibrations are the Kan fibrations.

• The acyclic fibrations are the trivial fibrations.

One of the key property which needs to be proven in order to establish this
theorem is that the Kan fibrations which are weak homotopy equivalences are
precisely the trivial fibrations.

Note that the fibrant objects in the Quillen model structure are precisely the
Kan complexes. Therefore it should be possible to interpret a Kan complex X
as an ∞-groupoid C. In fact we can interpret X0 as the set of objects in C, the
set X1 as the set of morphisms in C, and Xn for n ≥ 2 as the set commutative
n-simplices in C. Then the right lifting properties against hnk for n > 0 and
0 ≤ k ≤ n encode the relevant structure for C to be an ∞-groupoid.

Definition 2.7. Let u : A → B, v : A′ → B′ and f : X → Y be maps of
simplicial sets.

Then we denote by < u, f > the induced map :

< u, f >: XB → Y B ×Y A XA

and we denote by u×′ v the induced map :

u×′ v : B ×A′
∐
A×A′

A×B′ → B ×B′

Lemma 2.8. Let u : A → B and v : A′ → B′ be monomorphisms and let
f : X → Y be a Kan fibration. Then :

• < u, f > is a Kan fibration which is a weak homotopy equivalence whenever
u or f is.

• u ×′ v is a monomorphism which a weak homotopy equivalence whenever
u or v is.

In the language of Appendix D.3, this means that the cartesian product of
simplicial set is a left Quillen bifunctor for the Quillen model structure.
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2.3 The Joyal model structure

Now we present the Joyal model structure.

Definition 2.9. A mid-fibration is a map which has the right lifting property
against the horns hnk for n > 1 and 0 < k < n.

A quasi-category is a simplicial set S such that the unique map from S to
∆0 is a mid-fibration.

A mid-anodyne extension is a map which has the left lifting property against
mid-fibrations.

Lemma 2.10. The mid-anodyne extensions form the smallest saturated class
of morphisms containing the horns hnk for n > 1 and 0 < k < n.

Proof. This is a consequence of Lemma A.8.

As expected the usual categories can be seen as (∞, 1)-categories, i.e. as
quasi-categories. We use Appendix A.3 on adjunctions from a presheaf category.

Definition 2.11. We define the functor τ1 : S → Cat preserving colimits by
defining τ1(∆n) to be the ordinal n seen as a category.

Its right adjoint is denoted by N : Cat→ S and is called the nerve functor.

Lemma 2.12. The nerve functor is full and faithful.

We denote by τ0(X) with X a simplicial set the isomomorphism classes of
objects in τ1(X). This τ0 is a functor from simplicial sets to sets.

Definition 2.13. A map f : X → Y of simplicial sets is called a weak categor-
ical equivalence if for all quasi-category S the induced map :

τ0(f∗) : τ0(HomS(Y, S))→ τ0(HomS(X,S))

is a bijection.

Theorem 2.14. There exists a model structure on S called the Joyal model
structure where :

• The cofibrations are the monomorphims.

• The weak equivalences are the weak categorical equivalences.

• The fibrant objects are the quasi-categories.

The fibrations in this model structure are called the categorical fibrations,
and the monomorphisms which are weak categorical equivalences are called the
acyclic categorical cofibrations.

The interpretation of a quasi-category as an (∞, 1)-category is similar to the
interpretation of a Kan complex as an ∞-groupoid. The fact that we do not
ask for every morphism between objects to be weakly invertible in an (∞, 1)-
category is encoded by quasi-categories having the left lifting property against
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fewer horns than Kan complexes. In fact for X a simplicial set we can define an
element of X1 to be weakly invertible if its image in τ1(X) is an isomorphism.
Then it can be proven that a quasi-category X is a Kan complex if and only
if all elements of X1 are weakly invertible. This formalises the principle that
∞-groupoids are (∞, 1)-categories with weakly invertible morphisms between
objects.

Lemma 2.15. The mid-anodyne extensions are acyclic categorical cofibrations.
The categorical fibrations are mid-fibrations.

Note that the converses fail, even for maps between quasi-categories. But
we have a partial result in the other direction. We denote by u1 : ∆0 ⊂ (∆1)′

the inclusion of an object in (∆1)′. We do not specify the object because both
choices lead to isomorphic maps.

Lemma 2.16. A map between quasi-categories is a categorical fibration if and
only if it is a mid-fibration which have the right lifting property against u1 :
∆0 ⊂ (∆1)′.

Lemma 2.17. Let u : A → B and v : A′ → B′ be monomorphisms and let
f : X → Y be a categorical fibration. Then :

• < u, f > is a categorical fibration which is a weak categorical equivalence
whenever u or f is.

• u×′v is a monomorphism which is a weak categorical equivalence whenever
u or v is.

In the language of Appendix D.3, this means that the cartesian product of
simplicial sets is a left Quillen bifunctor for the Joyal model structure.

2.4 The largest Kan sub-complex in a quasi-category

It is clear that Kan complexes are quasi-categories.

Lemma 2.18. There exists a right adjoint to the inclusion of Kan complexes
in quasi-categories. It is denoted by J .

In order to understand this adjoint, recall that Kan complexes are precisely
the quasi-categories with all morphisms weakly invertible. Henceforth J(X)
is the largest Kan sub-complex of X, meaning that it is obtained from X by
discarding the non-weakly invertible morphisms.

Lemma 2.19. The functor J takes weak categorical equivalences to weak ho-
motopy equivalences.

The functor J takes categorical fibrations to Kan fibrations.

Lemma 2.20. Let X be a quasi-category. The functor A 7→ J(XA) : S→ Sop

has a right adjoint denoted by A 7→ X(A) : Sop → S.

Lemma 2.21. The functor A 7→ X(A) takes weak homotopy equivalences to
weak categorical equivalences.
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2.5 Two Quillen adjunctions between the Quillen and Joyal
model structures

Lemma 2.22. Weak categorical equivalences are weak homotopy equivalences,
so that the identity adjunction is a Quillen adjunction from the Joyal model
structure to the Quillen model structure.

In this situation we say that the Quillen model structure is a Bousfield
localisation of the Joyal model structure, see Appendix D.6 for a definition.

We denote by (∆n)′ the nerve of the groupoid with n + 1 canonically iso-
morphic objects. In order to build the next adjunction, we use the results of
Appendix A.3, on the adjunctions with domain a presheaf category.

Definition 2.23. We define a functor k! : S → S preserving colimits by
k!(∆

n) = (∆n)′. It has a right adjoint denoted by k!.

Note that intuitively k! is not far from an extension of J to all simplicial
sets. This can be formalised : we have natural trivial fibrations k!(X)→ J(X)
for any quasi-category X.

Lemma 2.24. The adjunction k! : S→ S : k! is a Quillen adjunction from the
Quillen model structure to the Joyal model structure.

2.6 Some lemmas about simplicial sets

We list various results about simplicial sets.

Lemma 2.25. The maps jn : ∆0 ∼= {0} ⊂ ∆n are anodyne for n ≥ 0

Lemma 2.26. The spine maps in are mid-anodyne for n ≥ 2 .

Lemma 2.27. The spine maps in for n ≥ 2 and the map u1 : ∆0 ⊂ (∆1)′ are
acyclic categorical cofibrations.

Lemma 2.28. Let A be some saturated class of monomorphisms in S. Assume
it has the right cancellation property (i.e. uv ∈ A and v ∈ A implies u ∈ A). If
in is in A for n ≥ 2, then A contains every mid-anodyne extension.

3 Bisimplicial sets

We denote by S(2) the category of bisimplicial sets. In this section we present
some features of this category.

3.1 Relations with simplicial sets

For X a bisimplicial set we denote by Xm,• the simplicial set k 7→ Xm,k. It
is called the m-th row of X. Similarly we denote by X•,n the simplicial set
k 7→ Xk,n. It is called the n-th column of X.
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Definition 3.1. We define � : S× S→ S(2) by (A�B)m,n = Am × Bn with
the obvious face and degeneracy maps.

We define \ : Sop × S(2) → S by (A\X)n = HomS(A,X•,n).

We define / : S(2) × Sop → S by (X/B)n = HomS(B,Xn,•).

We note that the representable bisimplicial sets are the ∆m�∆n form,n ≥ 0.
Moreover ∆n\X = X•,n is the n-th column of X and X/∆n = Xn,• is its n-th
row.

Lemma 3.2. For all A and B simplicial sets and X a bisimplicial set, we have
the following natural isomorphisms :

HomS(A,X/B) ∼= HomS(2)(A�B,X) ∼= HomS(B,A\X)

Proof. We use basic properties of ends, as presented in [9]. We have the following
string of natural isomorphisms :

HomS(A,X/B) ∼=
∫
k

HomSet(Ak,HomS(B,Xk,•))

∼=
∫
k

HomSet

(
Ak,

∫
l

HomSet(Bl, Xk,l)

)
∼=
∫
k,l

HomSet(Ak,HomSet(Bl, Xk,l))

∼=
∫
k,l

HomSet(Ak ×Bl, Xk,l) ∼= HomS(2)(A�B,X)

The other natural isomorphism is proved similarly.

The situation of Lemma 3.2 is described abstractly in Appendix A.2, where
the notations < \ >, < / > and �′ are introduced.

Definition 3.3. We denote by p1, p2 : ∆2 → ∆ the projections. We denote by
i1, i2 : ∆ → ∆2 the inclusions given by i1(n) = (n, 0) and i2(n) = (0, n). We
have adjunctions :

p∗1 : S→ S(2) : i∗1

p∗2 : S→ S(2) : i∗2

Proof. For K a simplicial set and X a bisimplicial set, we have the natural
isomorphisms :

p∗1(K) ∼= K�∆0

i∗1(X) ∼= X/∆0

p∗2(K) ∼= ∆0�K

i∗2(X) ∼= ∆0\X

Then we can use Lemma 3.2.
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Lemma 3.4. Let X be a simplicial set and let Y be a bisimplicial set. Let
u : X → i∗1(Y ) be a morphism and let v : p∗1(X)→ Y be the morphism obtained
from u by using the adjunction.

Then for all n ≥ 0, the morphism v/∆n is equal to the composite :

p∗1(X)/∆n ∼= X
u→ i∗1(Y ) ∼= Y/∆0 Y/tn→ Y/∆n

with tn the unique morphism from ∆n to ∆0.

3.2 Simplicial enrichment

See Appendix D.4 for the definitions of simplicial enrichments and their tensors
and cotensors.

Definition 3.5. We define :

HomS(2)(X,Y ) = i∗2(Y X)

This defines an enrichment of S(2) in simplicial sets.

Lemma 3.6. This simplicial enrichment admits tensors and cotensors.

Proof. Let X and Y be bisimplicial sets and S be a simplicial set, we have the
natural isomorphims :

HomS(S,HomS(2)(X,Y )) = HomS(S, i∗2(Y X)) ∼= HomS(2)(p∗2(S), Y X)

∼= HomS(2)(X × p∗2(S), Y ) ∼= HomS(2)(X,Y p
∗
2(S))

3.3 Trivial fibrations

Recall that for m ≥ 0, we denote by δm the inclusion ∂∆m ⊂ ∆m.

Definition 3.7. A map of bisimplicial sets is a called a trivial fibration if it
has the right lifting property against δm�′δn for all m,n ≥ 0.

Lemma 3.8. The class of monomorphisms of bisimplicial sets is the smallest
saturated class of morphisms containing δm�′δn for all m,n ≥ 0.

Corollary 3.9. A trivial fibration has the right lifting property against any
monomorphism.

Proof. By Lemma A.5, the class of morphisms having the left lifting property
against the trivial fibrations is saturated. But it contains the δm�′δn for m,n ≥
0 by definition, therefore it contains all the monomorphisms by Lemma 3.8.
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4 Model structures on bisimplicial sets

Now we present four model structures on bisimplicial sets. The vertical and hor-
izontal model structures are build using the theory of Reedy model structures.
This theory is presented in Appendix C in the special case of bisimplicial sets.
The Segal and Rezk model structures are Bousfield localisations of the vertical
model structure, and are build using results from Appendix D.7.

4.1 The vertical model structure

Theorem 4.1. There exists a model structure on bisimplicial sets called the
vertical model structure where :

• The cofibrations are the monomorphisms.

• The weak equivalences are the column-wise weak homotopy equivalence,
i.e. the maps f such that for all n ≥ 0 the map ∆n\f is a weak homotopy
equivalence.

• The fibrations are the maps f such that for all m ≥ 0, the map < δm\f >
is a Kan fibration.

• The acyclic fibrations are the maps f such that for all m ≥ 0, the map
< δm\f > is a trivial fibration.

Proof. We use Lemma C.1 and the Quillen model structure. All that is left to
prove is that the cofibrations are precisely the monomorphisms.

It is enough to show that the acyclic vertical fibrations are the trivial fi-
brations. A map of bisimplicial set f is a trivial fibration if and only if for all
m,n ≥ 0 we have δm�′δn t f , which is equivalent to < δm\f > being a trivial
fibration of simplicial sets for all m ≥ 0 by Lemma A.11.

See Appendix D.1, D.2 and D.4 for the definitions left proper, combinatorial
and simplicial model categories.

Lemma 4.2. The vertical model structure is left proper, combinatorial and
simplicial.

Proof. See Appendix D.5.

We will use this lemma in order to build Bousfield localisations of the vertical
model structure.

4.2 The horizontal model structure

Theorem 4.3. There exists a model structure on bisimplicial sets called the
horizontal model structure where :

• The cofibrations are the monomorphisms.
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• The weak equivalences are the row-wise weak categorical equivalences, i.e.
the maps f such that for all n ≥ 0 the map f/∆n is a weak categorical
equivalence.

• The fibrations are the maps f such that for all m ≥ 0, the map < f/δm >
is a categorical fibration.

• The acyclic fibrations are the maps f such that for all m ≥ 0, the map
< f/δm > is a trivial fibration.

Proof. We use Lemma C.2. All that is left to prove is that the cofibrations are
precisely the monomorphisms.

This can be proved as Theorem 4.1.

Lemma 4.4. The adjunction p∗1 : S→ S(2) : i∗1 is a Quillen adjunction between
the Joyal model structure and the horizontal model structure.

Proof. It is enough to check that p∗1 is preserves cofibrations and weak equiva-
lences. It clearly preserves monomorphisms, i.e. cofibrations. Moreover we have
that p∗1(X)/∆n ∼= X naturally in X for all n ≥ 0. So if f is a weak categorical
equivalence then p∗1(f) is a row-wise weak categorical equivalence.

4.3 Bousfield localisations of the vertical model structure

We will now apply the general results summarized in Appendix D.7 in order to
build Bousfield localisations of the vertical model structure. The definition of
Bousfield localisations can be found in Appendix D.6.

Theorem 4.5. Assume given a set S of monomorphisms of simplicial sets.
Then we can define a model structure on S(2) where :

• The cofibrations are the monomorphisms.

• The fibrant objects in the new model structure are the vertically fibrant
objects X such that s\X is a weak homotopy equivalence for all s in S.

• The weak equivalences are the maps f : X → Y such that for all fibrant
objects Z the induced map :

f∗ : HomS(2)(Y,Z)→ HomS(2)(X,Z)

is a weak homotopy equivalence.

Moreover this model structure is a Bousfield localisation of the vertical model
structure.

Proof. By Lemma 4.2, we can apply Theorem D.25 to the set of monomorphisms
of bisimplicial set {p∗1(s) | s ∈ S}. We obtain a simplicial Bousfield localisation
of the vertical model structure where :

• The cofibrations are the monomorphisms.
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• The fibrant objects are the vertically fibrant bisimplicial sets X such that
for all s : A→ B in S the induced map :

(p∗1(s))∗ : HomS(2)(p∗1(B), X)→ HomS(2)(p∗1(A), X)

is a weak homotopy equivalence.

We show that HomS(2)(p∗1(A), X) is naturally isomorphic to A\X, so that
the fibrant objects in this model structure are as claimed. But we have the
following string of natural isomorphisms for B a simplicial set :

HomS(B,HomS(2)(p∗1(A), X)) = HomS(B, i∗2(Xp∗1(A)))

∼= HomS(2)(p∗2(B), Xp∗1(A)) ∼= HomS(2)(p∗1(A)× p∗2(B), X)

∼= HomS(2)(A�B,X) ∼= HomS(B,A\X)

so we can use Yoneda lemma.
All that is left to show in order to conclude is that the weak equivalences

are as claimed. But using the fact that every object in this simplicial model
structure is cofibrant and Lemma D.13, we obtain the desired characterisation
of weak equivalences.

Note that the model structures build using this theorem are simplicial.

4.4 The Segal model structure

Recall that for n ≥ 2 we denote by in : In ⊂ ∆n the inclusion of the union the
edges labelled by {k, k + 1} for 0 ≤ k < n in ∆n.

Definition 4.6. A Segal space is a vertically fibrant bisimplicial set X such
that in\X is a weak homotopy equivalence for all n ≥ 2.

Theorem 4.7. There exists a Bousfield localisation of the vertical model struc-
ture on bisimplicial sets called the Segal model structure where :

• The cofibrations are the monomorphisms.

• The fibrant objects are the Segal spaces.

• The weak equivalences are the maps f : X → Y such that for all Segal
spaces Z the induced map :

f∗ : HomS(2)(Y,Z)→ HomS(2)(X,Z)

is a weak homotopy equivalence.

Proof. We apply Theorem 4.5 to {in | n ≥ 2}.
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Intuitively, for X a bisimplicial set, the simplicial set X•,0 will be the space
of objects of the (∞, 1)-category it represents, and X•,1 will be its space of
morphisms. For n ≥ 2, the fact that in\X is a weak homotopy equivalence
gives us a canonical weak homotopy equivalence between X•,n and X•,1 ×X•,0
· · ·×X•,0 X•,1 with n copies of X•,1, that is the space of strings of n composable
morphisms.

Note that we do not use this model structure, but we include it anyway as
it is easy to build using Theorem 4.5.

4.5 The Rezk model structure

Recall that (∆1)′ is the nerve of the groupoid with two canonically isomorphic
objects. Recall that we denote by u1 the inclusion ∆0 ⊂ (∆1)′.

Definition 4.8. A complete Segal space is a Segal space X such that u1\X is
a weak homotopy equivalence.

Theorem 4.9. There exists a Bousfield localisation of the vertical model struc-
ture on bisimplicial sets called the Rezk model structure where :

• The cofibrations are the monomorphisms.

• The fibrant objects are the complete Segal spaces.

• The weak equivalences are the maps f : X → Y such that for all complete
Segal spaces Z the induced map :

f∗ : HomS(2)(Y,Z)→ HomS(2)(X,Z)

is a weak homotopy equivalence.

Proof. We apply Theorem 4.5 to {in | n ≥ 2} ∪ {u1}.

The condition that u1\X is a weak homotopy equivalence is analogous to
the univalence axiom from homotopy type theory [13]. Intuitively it states that
for X a complete Segal space and any two points x and y in X•,0 (correspond-
ing to objects in the represented (∞, 1)-category), there is a weak homotopy
equivalence between the space of paths between x and y in X•,0 and the space
of weakly invertible morphisms between x and y in X•,1. A precise statement
along these lines is Theorem 6.2 in [12].

Lemma 4.10. A Rezk fibration is a vertical fibration.

Proof. This is a consequence of the fact that the Rezk model structure is a
Bousfield localisation of the vertical model structure, using Lemma D.20.
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5 First results on the model structures on bisim-
plicial sets

This section collects results about the various model structures introduced in
previous section.

5.1 Characterisations of vertical fibrations

Lemma 5.1. Let f : X → Y be a map of bisimplicial sets. Then the following
are equivalent :

(i) f is a vertical fibration, i.e. the map < δn\f > is a Kan fibration for all
n ≥ 0.

(ii) < u\f > is a Kan fibration for every monomorphism u.

(iii) < f/hnk > is a trivial fibration for every n > 0 and 0 ≤ k ≤ n.

(iv) < f/v > is a trivial fibration for every anodyne extension v.

(v) f has the right lifting property against δm�′hnk for all m ≥ 0, n > 0 and
0 ≤ k ≤ n.

Proof. By Lemma A.11, we know that the items (i), (iii) and (v) are equivalent.
We show that (i) is equivalent to (ii). It is enough to show that (i) implies

(ii). But the class of morphisms u such that < u\f > is a Kan fibration is the
class of morphisms such that u t< f/hnk > for n > 0 and 0 ≤ k ≤ n, so it is
saturated by Lemma A.5, and we can conclude using Lemma 2.2.

We show the equivalence of (iii) and (iv) similarly, using Lemma 2.4.

5.2 Characterisations of Segal spaces

Lemma 5.2. Let X be vertically fibrant bisimplicial set. Then the following are
equivalent :

(i) X is a Segal space, i.e. in\X is a weak homotopy equivalence for all n ≥ 2.

(ii) hnk\X is a trivial fibration for all n > 1 and 0 < k < n.

(iii) v\X is a trivial fibration for all mid-anodyne extension v.

(iv) X/δn is a mid-fibration for all n ≥ 0.

(v) X/u is a mid-fibration for all monomorphism u.

(vi) The unique map from X to the final bisimplicial set has the right lifting
property against hmk �

′δn for m > 1, 0 < k < m and n ≥ 0.
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Proof. By Lemma A.11, we know that the items (ii), (iv) and (vi) are equivalent.
The class of morphisms of simplicial sets v such that v\X is a trivial fibration

is the class of v such that v t X\δn for n ≥ 0, so it is saturated by Lemma A.5.
So (ii) implies (iii) using Lemma 2.10. So (ii) is equivalent to (iii).

Similarly (iv) implies (v) using Lemma 2.2, and therefore (iv) is equivalent
to (v).

By Lemma 2.26 the maps in are mid-anodyne extensions, and therefore (iii)
implies (i). Now we show the converse. By Lemma 2.28, it is enough to show
that for X a vertically fibrant bisimplicial set the class of monomorphisms v such
that v\X is a trivial fibration has the two-out-of-three property and contains
the in for n ≥ 2. But by Lemma 5.1 we know that v\X is a Kan fibration
for any monomorphism v, and therefore it is a trivial fibration if and only if
it is a weak homotopy equivalence. But weak homotopy equivalences have the
two-out-of-three property and in\X is a weak homotopy equivalence for n ≥ 2
by hypothesis, so we can conclude.

5.3 A sufficient condition to be a complete Segal space

Lemma 5.3. Let X be a vertically fibrant simplicial set. Assume that for any
acyclic categorical cofibration u, the map u\X is a weak homotopy equivalence.
Then X is a complete Segal space.

Proof. This is consequence of the fact that in for n ≥ 2 and u1 are acylic
categorical cofibrations by Lemma 2.27.

6 The first Quillen equivalence between the Joyal
and Rezk model structures

In this section we show that the adjunction p∗1 : S → S(2) : i∗1 from Definition
3.3 is a Quillen equivalence between the Joyal and Rezk model structures. The
definition of Quillen equivalence can be found in Appendix B.3. As i∗1 associates
to a bisimplicial set its first row, we call this adjunction the first-row adjunction.

6.1 The first-row Quillen adjunction

In this section we show that the Rezk model structure is a Bousfield localisation
of the horizontal model structure. From this we conclude that the first-row
adjunction is a Quillen adjunction.

Lemma 6.1. Let f : X → Y be a map of bisimplicial sets, and let u : A → B
be a map of simplicial sets such that u\X and u\Y are trivial fibrations. Then
< u\f > is a weak homotopy equivalence.
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Proof. By definition of < u\f > we have the following diagram :

B\X

B\Y ×A\Y A\X A\X

B\Y A\Y

<u\f>

u\X

B\f

pA\X

A\f

u\Y

By hypothesis we know that u\X and u\Y are trivial fibrations, hence so is
pA\X as it is the pullback of a trivial fibration. We can conclude that < u\f >
is a weak homotopy equivalence by the two-out-of-three property.

Lemma 6.2. Let f : X → Y be a vertical fibration between Segal spaces and
let v : A → B be a mid-anodyne extension of simplicial sets. Then < v\f > is
a trivial fibration.

Proof. By Lemma 5.1, the map < v\f > is a Kan fibration, so it is enough to
show that it is a weak homotopy equivalence. By Lemma 6.1 it is enough to
show that v\X and v\Y are trivial fibrations, and we conclude using Lemma
5.2.

Lemma 6.3. Let f : X → Y be a vertical fibration between Segal spaces and
let u : A → B be a monomorphism of simplicial sets. Then < f/u > is a
mid-fibration between quasi-categories.

Proof. By Lemma 6.2, the map < f/u > is a mid-fibration, as v t< f/u >
with v mid-anodyne is equivalent to u t< v\f >.

Now Lemma 5.2 shows that the domain of < f/u > (namely X/B) is a
quasi-category, as X/∅ is the terminal object and ∅ → B is a monomorphism.

We have the following pullback square :

Y/B ×Y/A X/A X/A

Y/B Y/A

pX/A

f/A

Y/u

By Lemma 5.2 we know that X/A is a quasi-category and that Y/u is a
mid-fibration. But then pX/A is a mid-fibration as well, and then the codomain
of < f/u > is a quasi-category.
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Lemma 6.4. Let f : X → Y be a vertical fibration between complete Segal
spaces and let u : A→ B be a monomorphism of simplicial sets. Then < f/u >
is a categorical fibration.

Proof. By Lemma 6.3, the map < f/u > is a mid-fibration between quasi-
categories. Hence by Lemma 2.16 it is enough to check that < f/u > has the
right lifting property against u1 : ∆0 ⊂ (∆1)′. But u1 t< f/u > is equivalent
to u t< u1\f >, so it is enough to check that < u1\f > is a trivial fibration.

By Lemma 5.1, the map < u1\f > is a Kan fibration. So it is enough to
show that it is a weak homotopy equivalence. So by Lemma 6.1 we just need to
prove that u1\X and u1\Y are trivial fibrations.

We check that u1\Z is a trivial fibration for any complete Segal space Z.
We know that Z is vertically fibrant so u1\Z is a Kan fibration by Lemma 5.1.
Moreover it is a weak homotopy equivalence by the definition of a complete
Segal space.

The next theorem is fundamental, and will be used several times in what
follows.

Theorem 6.5. The Rezk model structure is a Bousfield localisation of the hor-
izontal model structure.

Proof. By Lemma B.7 it is enough to check that the identity functors form a
Quillen adjunction. Both model structures have the monomorphisms as cofi-
brations by Theorems 4.1 and 4.9. By Lemma B.6 it is enough to check that a
Rezk fibration between complete Segal spaces is an horizontal fibration.

But we know that a Rezk fibration is a vertical fibration by Lemma 4.10, so
we can conclude using Lemma 6.4.

Now we can see that the first-row adjunction is a Quillen adjunction.

Lemma 6.6. The adjunction p∗1 : S→ S(2) : i∗1 is a Quillen adjunction between
the Joyal model structure and the Rezk model structure.

Proof. This is a consequence of Lemma 4.4 and Theorem 6.5.

6.2 The first-row Quillen adjunction is a homotopy local-
isation

See Appendix B.3 for the definition of homotopy localisation. We introduce
some terminology for bisimplicial sets. Recall that for n ≥ 0, we denote by tn
the unique map from ∆n to ∆0.

Definition 6.7. A bisimplicial set X is said categorically constant if for all
n ≥ 0, the map X/tn : X/∆0 → X/∆n is a weak categorical equivalence.

Lemma 6.8. A vertically fibrant simplicial set is categorically constant.
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Proof. Let us denote by jn the map ∆0 ∼= {0} ⊂ ∆n. Assuming X vertically
fibrant, we need to show that X/tn is a weak categorical equivalence. By Lemma
5.1, we know that X/jn is a trivial fibration since jn is anodyne by Lemma 2.25,
so X/jn is a weak categorical equivalence. Then (X/jn)(X/tn) = X/(tnjn) =
idX/∆0 is a weak categorical equivalence and we can conclude using the two-
out-of-three property.

Lemma 6.9. The Quillen adjunction p∗1 : S→ S(2) : i∗1 between the Joyal model
structure and the Rezk model structure is a homotopy localisation.

Proof. By Lemma B.10 it is enough to show that the counit εX : p∗1i
∗
1(X)→ X

is a Rezk weak equivalence for any complete Segal space X, since we can choose
the identity as cofibrant replacement.

By Theorem 6.5 it is enough to show that εX is a row-wise categorical equiv-
alence. But εX/∆

n is isomorphic to X/tn by Lemma 3.4, which is a weak
categorical equivalence by Lemma 6.8.

6.3 The first-row Quillen adjunction is a homotopy colo-
calisation

Here we need to build explicitly fibrant remplacements for bisimplicial sets of
the form p∗1(X) with X a quasi-category.

Definition 6.10. Let X be a quasi-category, then we define a bisimplicial set
Γ(X) : n 7→ J(X∆n

) using the cosimplicial structure of the (∆n)n≥0.

Lemma 6.11. Let X be a quasi-category, then we have isomorphisms

A\Γ(X) ∼= J(XA)

and
Γ(X)/A ∼= X(A)

natural in A in Sop.

Proof. We show the first isomorphism. Both functors A 7→ A\Γ(X) and A 7→
J(XA) are naturally isomorphic on representable simplicial sets. So by Lemma
A.13 it is enough to show that they are colimit-preserving in order to conclude.
But both have right adjoints by Lemmas 2.20 and 3.2.

The second isomorphism comes from the unicity of adjoints.

Definition 6.12. Let X be a quasi-category. We know that

i∗1(Γ(X)) = Γ(X)/∆0 ∼= X(∆0) ∼= X

so by adjunction we obtain a morphism p∗1(X)→ Γ(X).

Lemma 6.13. Let X be a quasi-category. The morphism p∗1(X) → Γ(X) of
Definition 6.12 is a Rezk weak equivalence, and Γ(X) is a complete Segal space.
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Proof. We need to prove that Γ(X) is vertically fibrant, i.e. δn\Γ(X) is a Kan
fibration for all n ≥ 0. By Lemma 6.11 these maps are isomorphic to J(Xδn).
But Xδn is a categorical fibration by Lemma 2.17, so J(Xδn) is a Kan fibration
by Lemma 2.19.

Now we need to prove that Γ(X) is a complete Segal space. By Lemma
5.3, it is enough to show that for any acyclic categorical cofibration u, the map
u\Γ(X) is a weak homotopy equivalence. This map is isomorphic to J(Xu)
by Lemma 6.11. But Xu is a weak categorical equivalence by Lemma 2.17.
Therefore by Lemma 2.19, the map J(Xu) is a weak homotopy equivalence.

Now we prove that the morphism p∗1(X)→ Γ(X) is a Rezk weak equivalence.
By Theorem 6.5 it is enough to show that it is a row-wise weak categorical
equivalence. But by Definition 6.12 and Lemma 3.4 it is enough to show that
Γ(X)/tn is a weak categorical equivalence for all n ≥ 0, with tn the unique map
from ∆n to ∆0. But this map is isomorphic to X(tn) by Lemma 6.11 and we can
conclude using Lemma 2.21, because tn is a weak homotopy equivalence.

Lemma 6.14. The Quillen adjunction p∗1 : S → S(2) : i∗1 is a homotopy colo-
calisation.

Proof. Using Lemma B.11 with the fibrant replacement of Lemma 6.13, it is
enough to show that for any quasi-category X the composite map :

X → i∗1p
∗
1(X)→ i∗1Γ(X)

is a weak categorical equivalence. By Definition 6.12 this composite is an iso-
morphism, hence a weak categorical equivalence.

Now we can combine the results of this section in order to obtain the first-row
Quillen equivalence.

Theorem 6.15. The adjunction p∗1 : S → S(2) : i∗1 is a Quillen equivalence
between the Joyal model structure and the Rezk model structure.

Proof. This is a consequence of Lemmas 6.9, 6.14 and B.12.

One consequence of this theorem is that a complete Segal space is determined
up to weak equivalence by its first row.

7 The second Quillen equivalence between the
Joyal and Rezk model structures

Now we show that there is a Quillen equivalence in the other direction, from
the Rezk model structure to the Joyal model structure.
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7.1 The spaces of simplices adjunction

We will use the results from Appendix A.3 on functors from a presheaf category.

Definition 7.1. We define the functor t! : S(2) → S preserving colimits by
t!(∆

m�∆n) = ∆m × (∆n)′ for m,n ≥ 0. It has a right adjoint denoted by t!.

Note that t!(X)m,n = HomS(∆m×(∆n)′, X), as claimed in the introduction.
Since t!(X)m,• is a good model for the space of m-simplices in X, we call this
adjunction the spaces of simplices adjunction.

Lemma 7.2. We have the following natural isomorphisms, for A and B sim-
plicial sets and X a bisimplicial set :

t!(A�B) ∼= A× k!(B)

A\t!(X) ∼= k!(XA)

Proof. The first isomorphism is easy to check for A and B representable, and
both functors commute with colimits in each variable, so we can use Lemma
A.13. The second isomorphism is a consequence of the first one using Yoneda
lemma.

Lemma 7.3. Let u : A → B and v : A′ → B′ be maps of simplicial sets, and
let f : X → Y be a map of bisimplicial sets. Then t!(u�′v) = u ×′ k!(v) and
< u\t!(f) >= k!(< u, f >).

Proof. This is a consequence of Lemma 7.2.

7.2 The spaces of simplices Quillen equivalence

Our strategy is as follows : first we show that the spaces of simplices adjunction
is a Quillen adjunction from the vertical model structure to the Joyal model
structure. Then we show that it extends to the Rezk model structure. Finally
we will use the two-out-of-three property of Quillen equivalences and the results
of the previous section on the first-row adjunction in order to show that the
spaces of simplices adjunction is a Quillen equivalence.

Lemma 7.4. The adjunction t! : S(2) → S : t! is a Quillen adjunction between
the vertical model structure and the Joyal model structure.

Proof. By Lemma A.6 the class of morphisms of bisimplicial sets u such that
t!(u) is a monomorphism is saturated, because t! preserves colimits. By Lemma
3.8 it is enough to show that t!(δ

m�′δn) is a monomorphism for m,n ≥ 0 in
order to conclude that t! preserves cofibrations. But by Lemma 7.3, we know
that t!(δ

m�′δn) = δm ×′ k!(δ
n), and we can conclude using Lemmas 2.17 and

2.24.
Now we show that t! preserves fibrations. Let f : X → Y be a categorical

fibration, we need to show that t!(f) is a vertical fibration, i.e. that for all
monomorphism u of simplicial set the map < u\t!(f) > is a Kan fibration. But
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< u\t!(f) >= k!(< u, f >) by Lemma 7.3, < u, f > is a categorical fibration
by Lemma 2.17 and k! sends categorical fibrations to Kan fibrations by Lemma
2.24.

Lemma 7.5. The adjunction t! : S(2) → S : t! is a Quillen adjunction between
the Rezk model structure and the Joyal model structure.

Proof. By Lemmas 7.4 and D.22, it is enough to show that t! sends quasi-
category to complete Segal spaces. Let X be a quasi-category. We know that
t!(X) is vertically fibrant by Lemma 7.4, so by Lemma 5.3 it is enough to
prove that u\t!(X) is a weak homotopy equivalence for any acyclic categorical
cofibration u. By Lemma 7.2, we have that u\t!(X) = k!(Xu). We know that
Xu is a tivial fibration by Lemma 2.17, and that k! preserves trivial fibrations
by Lemma 2.24.

Theorem 7.6. The adjunction t! : S(2) → S : t! is a Quillen equivalence between
the Rezk model structure and the Joyal model structure.

Proof. By Lemma 7.5 we know that it is a Quillen adjunction. Using Lemma
B.13 and Theorem 6.15, it is enough to prove that the composed adjunction
t!p
∗
1 : S→ S : i∗1t

! is a Quillen equivalence.
We have the natural isomorphisms :

t!p
∗
1(A) ∼= t!(A�∆0) ∼= A× k!(∆

0) ∼= A

for A a simplicial set. But any adjunction naturally isomorphic to the identity
adjunction is a Quillen equivalence.

8 Conclusion

The vertical model structure is defined from the Quillen model structure, and
then it is suitably localised in order to obtain a model for (∞, 1)-categories. This
construction of the Rezk model structure from the Quillen model structure can
be seen as a special case of a more general construction of internal (∞, 1)-
categories in a given (sufficiently nice) (∞, 1)-category, with the Quillen model
structure representing the (∞, 1)-category of ∞-groupoids.

The Rezk model structure is simplicial (as it is obtained using Theorem
D.25), but the Joyal model structure is not, and this is not mere coincidence.
In fact we have seen that the Rezk model structure is a Bousfield localisation
of the horizontal model structure, which is itself build from the Joyal model
structure. From this point of view, we can see the construction of the Rezk
model structure from the Joyal model structure as a special case of a process
replacing a (sufficiently nice) model structure by a Quillen equivalent simplicial
model structure, as explained in [3].
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A Definitions and results from category theory

A.1 Left/right lifting properties and saturated classes

Definition A.1. Let C be a category. We say that a morphism i : A → B in
C has the left lifting property against a morphism f : X → Y in C if for all
commutative squares

A X

B Y

i fh

there exists a dotted arrow h making the two triangles commute.
We say equivalently that f has the right lifting property against i.
We denote this property by i t f .

Lemma A.2. Assume given an adjunction F : C → D : G. Assume given an
arrow u in C and an arrow v in D. Then we have that F (u) t v if and only if
u t G(v).

Definition A.3. Let C be a category, and let S a class of morphisms in C. We
say that S is saturated if :

• S is stable by pushouts.

• S is stable by retracts.

• S is stable by transfinite compositions.

Definition A.4. Let H be a class of morphisms in a category C. Then we
denote by l(H) (resp. r(H)) the class of morphisms which have the left (resp.
right) lifting property against all morphisms in H.

Lemma A.5. Let H be a class of morphisms in a category C. Then l(H) is
saturated.

Lemma A.6. Let C and D be categories admitting small colimits. Let F : C →
D be a colimit-preserving functor. If W is a saturated class of morphisms in D,
then so is F−1(W ).

Definition A.7. A pair of classes of morphisms (A,B) in a category C is called
a functorial weak factorisation system if :

• There exists a functorial factorisation of any map in C as a map in A
followed by a map in B.

• We have A = l(B) and B = r(A).

Lemma A.8. Assume given a set of maps S in a presheaf category C. Then
(l(r(S)), r(S)) is a functorial weak factorisation system. Moreover l(r(S)) is
the smallest saturated class of morphisms containing S.
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A proof of this last lemma is presented in Appendix A.1.2 of Lurie’s book [10].
He calls our saturated classes of morphisms weakly saturated. The reasoning
used in this proof is called the small object argument.

A.2 Bifunctors divisible on both sides

In this section C1, C2 and C3 are categories, and � : C1×C2 → C3 is a bifunctor.

Definition A.9. We say that � is divisible on both sides if there exists bifunc-
tors \ : Cop1 ×C3 → C2 and / : C3×Cop2 → C1 such that we have isomorphisms
natural in A ∈ Cop1 , B ∈ Cop2 and C ∈ C3 :

HomC1(A,C/B) ∼= HomC3(A�B,C) ∼= HomC2(B,A\C)

Definition A.10. Assume � is divisible on both sides. Let u : A → B be a
morphism in C1, let v : A′ → B′ be a morphism in C2 and let f : X → Y be a
morphism in C3.

Then we denote by u�′v the induced morphism A�B′
∐
A�A′ B�A

′ → B�B′.
We denote by < f/v > the induced morphism X/B′ → Y/B′ ×Y/A′ X/A′.
We denote by < u\f > the induced morphism B\X → B\Y ×A\Y A\X.

Lemma A.11. In the situation of the previous definition we have that u�′v t f
if and only if u t< f/v > if and only if v t< u\f >.

A.3 Adjunction from a presheaf category

For C and D two categories, we denote by Fun(C,D) the category of functors
from C to D with natural transformations between them.

Lemma A.12. Let C and D be categories and let F be a functor form C to
D. Then there exists a unique up to natural isomorphism colimit-preserving
extension of F to Fun(Cop,Set). Moreover this extension has a right adjoint G
defined by G(Y )(X) = HomD(F (X), Y ) for X in C and Y in D.

This lemma is used to define an adjunction from a presheaf category by
specifying a functor on representable presheaves.

We denote by yC : C → Fun(Cop,Set) the Yoneda embedding. We now state
a variant of this lemma.

Lemma A.13. Let C and D be categories. Then pre-composition with yC in-
duces an equivalence between colimit-preserving functors from Fun(Cop,Set) to
D and Fun(C,D).

B Model categories and morphisms between them

B.1 Model categories

We present the notion of model category. The original reference is [11]. Other
sources include [4] and [6]. Functorial weak factorisation systems are presented
in Definition A.7.
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Definition B.1. A model structure on a category C admitting all small limits
and small colimits is the data of three classes of morphisms (C,W,F ) called
cofibrations, weak equivalences and fibrations such that :

• The weak equivalences satisfy the two-out-of-three property, i.e. if f and
g are composable morphisms, then if any two among f , g and g ◦ f are in
W , so is the third.

• The pair (C ∩W,F ) is a functorial weak factorisation system.

• The pair (C,F ∩W ) is a functorial weak factorisation system.

The maps in C ∩W are called the acyclic cofibrations, and the maps in F ∩W
are called the acylic fibrations.

Note that we ask that C has all small limits and colimits (as opposed to finite
limits and colimits), and that the factorisations are required to be functorial.
These restrictions are not necessary, but all the model structures considered in
this document will satisfy them.

Definition B.2. Let C be a model category, then the localisation of C at the
weak equivalences is denoted by Ho(C).

The category Ho(C) is called the homotopy category of C.

Definition B.3. Let C be a model category. Then an object X in C is said :

• Cofibrant if the unique map from the initial object to X is a cofibration.

• Fibrant if the unique map from X to the final object is a fibration.

For C a model category, it is known that Ho(C) is equivalent to the sub-
category of fibrant and cofibrant objects in C with morphisms quotiented by a
congruence called the homotopy relation. We do not make this relation explicit
as we do not use it.

Definition B.4. Let C be a model category. A cofibrant replacement for an
object X is a cofibrant object X ′ together with weak equivalence from X ′ to X.
A fibrant replacement for an object Y is a fibrant object Y ′ together with weak
equivalence from Y to Y ′.

The definition of a model category implies that there exist a cofibrant and
a fibrant replacement for any object. These canonical (co)fibrant replacements
are functorial, by our definition of model categories.

B.2 Quillen functors

The notion of Quillen adjunction is a notion of morphism between model cate-
gories.
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Definition B.5. Let C and and D be two model categories. Let F : C → D : G
be an adjunction. We say that it is a Quillen adjunction if any of the following
equivalent conditions is true :

• F preserves cofibrations and acyclic cofibrations.

• G preserves fibrations and acyclic fibrations.

• F preserves cofibrations and G preserves fibrations.

In this case we say that F is a left Quillen functor, and that G is a right Quillen
functor.

Lemma B.6. Let C and and D be two model categories. Let F : C → D : G be
an adjunction. It is a Quillen adjunction if and only if F preserves cofibrations
and G sends fibrations between fibrant objects to fibrations.

Next lemma is sometimes called Ken Brown’s lemma.

Lemma B.7. Let F : C → D : G be a Quillen adjunction. Then F preserves
weak equivalences between cofibrant objects.

B.3 Quillen equivalences

Lemma B.8. A Quillen adjunction F : C → D : G between model categories C
and D induces an adjunction LF : Ho(C)→ Ho(D) : RG.

Definition B.9. A Quillen adjunction F : C → D : G is called :

• A Quillen equivalence if it induces an equivalence of category.

• A homotopy localisation if the induced functor RG is full and faithful.

• A homotopy colocalisation if the induced functor LF is full and faithful.

It is immediate from the definition that two Quillen equivalent model cate-
gories have equivalent homotopy categories. Similarly a homotopy (co)localisation
induces a (co)reflection of homotopy categories.

Lemma B.10. Let F : C → D : G be a Quillen adjunction. Assume that for
all fibrant and cofibrant objects X in D there exists a cofibrant replacement for
GX denoted by lGX : X ′ → GX such that the composite :

FX ′
F (lGX)→ FGX

εX→ X

is a weak equivalence. Then the Quillen adjunction F : C → D : G is a homotopy
localisation.
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Lemma B.11. Let F : C → D : G be a Quillen adjunction. Assume that for
all fibrant and cofibrant objects Y in C there exists a fibrant replacement for FY
denoted by rFY : FY → Y ′ such that the composite :

Y
ηY→ GFY

G(rFY )→ GY ′

is a weak equivalence. Then the Quillen adjunction F : C → D : G is a homotopy
colocalisation

Lemma B.12. A Quillen adjunction is a Quillen equivalence if and only if it
is a homotopy localisation and a homotopy colocalisation.

Lemma B.13. The Quillen adjunctions have the two-out-of-three property.

C Reedy model structure

Assume given a model category D. The Reedy model structures are model struc-
tures on categories of functors from C to D which exist for suitable categories
C. One such C is the category of standard simplices ∆. We present the results
for Reedy model structures only for bisimplicial sets, building model structures
on bisimplicial sets from model structures on simplicial sets. A general presen-
tation of Reedy model structures can be found in Chapter 5 of Hovey’s book
[6].

Lemma C.1. Assume given a model structure M on S. Then we can define a
model structure on S(2) where :

• The weak equivalences are the column-wise weak equivalence in M , i.e.
the maps f such that for any n ≥ 0 the map ∆n\f is a weak equivalence
in M .

• The fibrations are the maps f such that for all n ≥ 0 the map < δn\f >
is a fibration in M .

• The acyclic fibrations are the maps f such that for all n ≥ 0 the map
< δn\f > is an acyclic fibration in M .

This result can be seen through a mirror in order to give the following lemma.

Lemma C.2. Assume given a model structure M on S. Then we can define a
model structure on S(2) where :

• The weak equivalence are the row-wise weak equivalence in M , i.e. the
maps f such that for any n ≥ 0 the map f/∆n is a weak equivalence in
M .

• The fibrations are the maps f such that for all n ≥ 0 the map < f/δn >
is a fibration in M .

• The acyclic fibrations are the maps f such that for all n ≥ 0 the map
< f/δn > is an acyclic fibration in M .
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D Bousfield localisations of left proper, combi-
natorial and simplicial model structures

The goal of this appendix is to formulate Theorem D.25.

D.1 Left proper model categories

Definition D.1. A model category is called left proper if the pushout of a weak
equivalence along a cofibration is a weak equivalence.

Lemma D.2. If all objects in a model category are cofibrant, then it is left
proper.

D.2 Combinatorial model categories

In this section we give a definition of combinatorial model categories. First we
define accessible categories.

Definition D.3. Let κ be a cardinal and let C be a category that admits κ-filtered
colimits.

• An object X in C is said κ-compact if HomC(X, ) : C → Set preserves
κ-filtered colimits.

• C is said κ-accessible if there exists a set of κ-compact objects which gen-
erates C under κ-filtered colimit.

A category C is said accessible if there exists a cardinal κ such that C is κ-
accessible.

The cardinal κ is often required to be regular, but κ-accessible is equivalent
to cof(κ)-accessible, so this restriction is not mandatory.

Definition D.4. A category is called locally presentable if it is accessible and
admits small colimits.

Lemma D.5. Presheaf categories are locally presentable.

Definition D.6. A model category is said cofibrantly generated if both the
classes of cofibrations and acyclic cofibrations are the smallest saturated classes
containing a set of morphisms.

The key fact about this definition is that we require generating sets of mor-
phisms.

Definition D.7. A model category is said combinatorial if it is locally pre-
sentable and its model structure is cofibrantly generated.
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D.3 Quillen bifunctors

In this section we assume that � : C1 × C2 → C3 is a bifunctor divisible on
both sides with Ci a model category for all i ∈ {1, 2, 3}. The definition of such
a bifunctor can be found in Appendix A.2.

Definition D.8. The bifunctor � : C1 × C2 → C3 is called a left Quillen
bifunctor if for any cofibration u in C1 and cofibration v in C2 the map u�′v is
a cofibration, which is acyclic if u or v is.

The bifunctor \ : Cop1 × C3 → C2 is called a right Quillen bifunctor if for
any cofibration u in C1 and fibration f in C3 the map < u\f > is a fibration,
which is acyclic if u or f is.

The bifunctor / : C3 × Cop2 → C1 is called a right Quillen bifunctor if for
any fibration f in C3 and cofibration v in C2 the map < f/v > is a fibration,
which is acyclic if f or v is.

Note that we have defined a Quillen bifunctor as a bifunctor divisible on
both sides, whereas they are usually defined as merely preserving colimits in
both variables.

Lemma D.9. We have that � is a left Quillen functor if and only if / is a
right Quillen functor if and only if \ is a right Quillen functor.

D.4 Simplicial model categories

We define simplicial model categories. We use the notion of Quillen bifunctor
from Appendix D.3.

Definition D.10. A simplicial enrichment of a category C is bifunctor HomC :
Cop × C → S such that HomC(X,Y )0

∼= HomC(X,Y ) naturally for X and Y in
C.

Definition D.11. A simplicial enrichment of a category C is said to admit
tensors if there exists a bifunctor ⊗ : S× C → C and natural isomorphisms :

HomC(K ⊗A,B) ∼= HomS(K,HomC(A,B))

for K a simplicial set and A and B in C.
It is said to admit cotensors of there exists a bifunctor : C × Sop → C and

natural isomorphisms :

HomS(K,HomC(A,B)) ∼= HomC(A,B
K)

for K a simplicial set and A and B in C.

Definition D.12. Let C be a model category with a simplicial enrichment ad-
mitting tensors and cotensors. We say that C is a simplicial model category if
HomC : Cop×C → S is a right Quillen bifunctor, with S given the Quillen model
structure.
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Lemma D.13. Let C be a simplicial model category. Then a map u : A → B
between cofibrant objects is a weak equivalence if and only if for any fibrant
object X the induced map :

u∗ : HomC(B,X)→ HomC(A,X)

is a weak homotopy equivalence.

D.5 The vertical model structure is left proper, combina-
torial and simplicial

Lemma D.14. The vertical model structure is left proper.

Proof. We know that every object is cofibrant, so we can conclude by Lemma
D.2.

Lemma D.15. The vertical model structure is combinatorial.

Proof. As a presheaf catgeory, the category of bisimplicial sets is locally pre-
sentable.

The cofibrations are the monomorphisms, hence they are the smallest stau-
rated class of morphisms containing the δm�′δn for m,n ≥ 0 by Lemma 3.8.

The acyclic cofibrations are the maps which have the left lifting property
against vertical fibrations. The vertical fibrations are the maps which have the
right lifting property against δm�′hnk for all m ≥ 0, n > 0 and 0 ≤ k ≤ n by
Lemma 5.1. So by Lemma A.8 the class of acyclic cofibrations is the smallest
saturated class of morphisms containing δm�′hnk for all m ≥ 0, n > 0 and
0 ≤ k ≤ n.

Lemma D.16. The internal Hom functor in bisimplicial set is a right Quillen
bifunctor for the vertical model structure.

Proof. By Lemma D.9 it is enough to show that the cartesian product is a left
Quillen bifunctor.

We know that for u and v monomorphisms, u ×′ v is a monomorphism as
well, because this is true for sets. Assume that u or v is a column-wise weak
homotopy equivalence. Then ∆n\(u ×′ v) ∼= (∆n\u) ×′ (∆n\v) and we can
conclude using Lemma 2.8.

Lemma D.17. The adjunction p∗2 : S → S(2) : i∗2 is a Quillen adjunction
between the Kan model structure and the vertical model structure.

Proof. It is enough to check that p∗2 preserves cofibrations and weak equiva-
lences. It clearly preserves monomorphisms, i.e. cofibrations. Moreover we
have that ∆n\p∗2(X) ∼= X naturally in X a simplicial set for all n ≥ 0. So if
f is a weak homotopy equivalence then p∗2(f) is a column-wise weak homotopy
equivalence.

Lemma D.18. The vertical model structure is simplicial for the simplicial en-
richment of S(2) of Definition 3.5.
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Proof. We know By Lemma 3.6 that the simplicial enrichment of S(2) admits
tensors and cotensors.

We need to show that HomS(2) : (S(2))op × S(2) → S is a right Quillen

bifunctor. But HomS(2) is the composite of the internal Hom bifunctor in S(2)

and i∗2. The composite of a right Quillen functor and a right Quillen bifunctor is
a right Quillen bifunctor, so we can conclude using Lemmas D.16 and D.17.

D.6 Definition of Bousfield localisations

Definition D.19. Let C be a category admitting all small limits and small
colimits. Let M = (C,W,F ) and M ′ = (C ′,W ′, F ′) be two model structures on
C. We say that M ′ is a Bousfield localisation of M if C = C ′ and W ⊂W ′.

If M ′ is a Bousfield localisation of M , then the identity adjunction is a
homotopy localisation from M to M ′.

Lemma D.20. If M ′ = (C ′,W ′, F ′) is a Bousfield localisation of M = (C,W,F ),
then F ′ ⊂ F .

Proof. C ∩W ⊂ C ∩W ′ implies

F ′ = r(C ∩W ′) ⊂ r(C ∩W ) = F

We have a partial converse.

Lemma D.21. Let M ′ = (C ′,W ′, F ′) be a Bousfield localisation of M =
(C,W,F ). Let f be a map between fibrant objects in M ′. Then f is in F if
and only if it is in F ′.

Lemma D.22. Let C and D be two model categories and let F : C → D : G
be a Quillen adjunction. Assume C′ is a Bousfield localisation of C. Then if G
takes fibrant objects in D to fibrant objects in C′, the Quillen adjunction extends
to C′.
Proof. We know that F : C′ → D preserves cofibrations, because the cofibrations
are the same in C and C′. By Lemma B.6, it is enough to check that G takes
fibrations between fibrant objects to fibrations. Let f : X → Y be such a
fibration between fibrant objects in D. We know that G(f) is a fibration in C,
and by hypothesis G(X) and G(Y ) are fibrant in C′. We conclude using Lemma
D.21.

D.7 Bousfield localisation at set of cofibrations in a sim-
plicial model category

In this section we present a general mean to build Bousfield localisations of
sufficiently good model categories. A possible reference is Appendix A.3.7 in
[10].

We denote by L (resp. R) the canonical cofibrant (resp. fibrant) replacement
functor given by our definition of model categories.
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Definition D.23. Let C be a simplicial category. We denote by MapC the
functor from Cop × C to S which associates to X and Y in C the simplicial set
HomC(LX,RY ).

Definition D.24. Let C be a simplicial model category, and let S be a set of
cofibrations in C.

• An object X in C is called S-local if for all s : A → B is S, the induced
morphism

s∗ : MapC(B,X)→ MapC(A,X)

is a weak homotopy equivalence.

• A morphism f : X → Y is called an S-equivalence if for all S-local object
Z the induced morphism

f∗ : MapC(Y,Z)→ MapC(X,Z)

is a weak homotopy equivalence.

Theorem D.25. Let C be a left proper combinatorial simplicial model category,
we denote its model structure by M . Let S be a set of cofibrations in M . Then
there is a model structure M ′ on C where :

• The cofibrations are the cofibrations in M .

• The weak equivalences are the S-equivalences.

• The fibrant objects in M ′ are the S-local fibrant objects in M .

Moreover M ′ is a Bousfield localisation of M , and it is a simplicial model struc-
ture.
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