Available online at www.sciencedirect.com

H H Electronic Notes in
SC|enceDlreCt Theoretical Computer

Science

scitoe ¥
ELSEVIER Electronic Notes in Theoretical Computer Science 336 (2018) 119-134
www.elsevier.com/locate/entcs

Finitary Higher Inductive Types
in the Groupoid Model

Peter Dybjer'?

Department of Computer Science and Engineering
Chalmers University of Technology
Gothenburg, Sweden

Hugo Moeneclaey®

Ecole normale supérieure de Paris-Saclay
Paris, France

Abstract

A higher inductive type of level 1 (a 1-hit) has constructors for points and paths only, whereas a higher
inductive type of level 2 (a 2-hit) has constructors for surfaces too. We restrict attention to finitary higher
inductive types and present general schemata for the types of their point, path, and surface constructors. We
also derive the elimination and equality rules from the types of constructors for 1-hits and 2-hits. Moreover,
we construct a groupoid model for dependent type theory with 2-hits and point out that we obtain a setoid
model for dependent type theory with 1-hits by truncating the groupoid model.

Keywords: intuitionistic type theory, identity types, homotopy type theory, higher inductive types,
setoids, groupoids

1 Introduction

Martin-Lof [14] introduced the general identity type former I(A, a, a’), the elements
of which are proofs that a and a’ are equal elements of A. Since A can be any type,
even an identity type, we can iterate this type former and obtain an infinite tower of
higher identity types A,1(A,a,d’),I(1(A,a,d’),p,p"),I(1(I(A,a,a’),p,p'),0,0"), etc.
In extensional type theory [15,16] this hierarchy collapses, since it has a rule forcing
I(A,a,a’) to have at most one element. However, this is not so in intensional
type theory [14,17]. As Hofmann and Streicher [12] showed, it has a model, the

L The first author was supported in part by the Swedish Research Council (Vetenskapsradet) grant ” Types
for Proofs and Programs”.

2 Email: peterd@chalmers.se
3 Email: hmoenecl@ens-paris-saclay.fr

https://doi.org/10.1016/j.entcs.2018.03.019
1571-0661/© 2018 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:peterd@chalmers.se
mailto:hmoenecl@ens-paris-saclay.fr
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2018.03.019
https://doi.org/10.1016/j.entcs.2018.03.019
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

120 P. Dybjer;, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119—134

groupoid model, where I(A, a,a’) may have more than one element. In fact, it was
later shown that intensional type theory has infinite-dimensional models in Kan
simplicial sets [25] and Kan cubical sets [2] which support interesting new axioms
such as Voevodsky’s univalence axiom.

A higher inductive type (hit) in the sense of Bauer, Lumsdaine, Schulman, and
Warren is a type where all the iterated identity types are inductively generated.
Higher inductive types occupy a central role in homotopy type theory [22], where
the tower of identity types is given a topological interpretation: a and a’ above are
points in a space, p and p’ are paths from a to a/, # and 6" are homotopies (or
surfaces) between p and p/, etc. In this way hits are used as abstract models of
certain spaces, such as the interval, the circle, the sphere, the torus, etc.

Although the idea behind higher inductive types is simple, a comprehensive
account of their syntax and semantics is still lacking. There is work on their cate-
gorical semantics [13,24] and on the semantics of some examples in cubical sets [3].
However, neither of these works answers the question of what a general notion of
higher inductive type is. We quote the HoTT book [22, p 179]:

In this book we do not attempt to give a general formulation of what constitutes
a "higher inductive definition” and how to extract the elimination rule from such
a definition — indeed, this is a subtle question and the subject of current research.
Instead we will rely on some general informal discussion and numerous examples.

So we would like to know what the types of constructors for hits look like in general
and what the associated elimination and equality rules are. We would also like to
provide a model which shows the consistency of a general theory of higher inductive
types. Actually, what is their foundational status and their relation to Martin-Lof’s
meaning explanations [15,16]7 Can type theory with higher inductive types be
modelled in type theory without higher inductive types, by reducing the meaning
of higher inductive types to the standard inductive or inductive-recursive types?

Our goal is thus to formulate a general theory of higher inductive types similar to
the theory of inductive families [5.4] and the theory of inductive-recursive definitions
[8,9,10]. In this paper we take a step towards this goal by limiting ourselves to the
simplest kinds of hits, the 1-hits with only point and path constructors and the
2-hits which may have surface constructors too. Moreover, we limit ourselves to
finitary such constructors in a sense to be made precise below. We propose general
schemata for introduction rules, and a method for deriving the elimination and
equality rules from the introduction rules. The schema for 1-hits can be interpreted
in the setoid model, where types are interpreted as setoids (sets with equivalence
relations). Similarly, we interpret our schema for 2-hits in the groupoid model,
where types are groupoids (categories where all arrows are isomorphisms).

Plan of the paper

In Section 2 we present an example of a 1-hit where the points are combinatory
terms and the paths are proofs that two combinatory terms are convertible. We
also sketch the interpretation of this 1-hit as a setoid. The aim here is to highlight

P. Dybjer, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119-134 121

the close connection between 1-hits and equational theories. In Section 3 we first
recall the general schema for inductive types and inductively defined binary rela-
tions. Although these schemata admit generalized inductive definitions of infinitely
branching trees (such as the elements of W-types) we explain why we here restrict
attention to 1-hits given by finitary inductive definitions. We propose a schema for
the introduction rules for such types and show how to derive their elimination and
equality rules. In Section 4 we recall how a 2-hit can represent the torus. In Section
5 we propose an extended schema for 2-hits. We also discuss which of the hits in
the HoTT-book are covered by our schema and which are not. In Section 6 we show
how to model 2-hits as groupoids. For reasons of space we do not present the setoid
model of 1-hits separately. Instead the groupoid model is presented in such a way
that the setoid model can be read off as a truncated version of the groupoid model.
In Section 7 we mention some related work and suggestions for further research.

2 Combinatory Logic as a 1-Hit

We start by presenting a small fragment of dependent type theory with dependent
functions types written (z : A) — B(x) and non-dependent ones written A — B.
Identity types are written a =4 o’ rather than I(A,a,a’). To this theory we add
the rules for the 1-hit CL with its formation rule, introduction rules for points and
paths, and elimination and equality rules.

We use “mathematical” notation f(z) for function application, f(z,y) for
f(z)(y), etc. Furthermore, x1 : Ai,...,2, : A, F A means that A is a type in
the context z1 : Ay,...,xp : Ay. Iz : A C is a type (or term) depending on
a variable z we often (but not always) use the notation C'(z) to emphasize this
dependence, and also write C'(a) for the result of substituting a for z in C.

The introduction rule for identity types is

refl: (z: A) wz =42

for any type A. The elimination rule and equality rule (Paulin [21]) are
Jo i (x:A) = C(x,refl(z)) =» (y: A) = (z:x=49y) = C(y, 2)
Jo(z,d,z,refl(x)) = d

where z : Ajy : A,z : x =4 y F C(y,z). The usual rules of equality reasoning

(transitivity, symmetry, replacement of equals for equals) can be derived from these

rules. We shall also derive rules for a heterogeneous identity type a :f a’ which lets
us compare elements a : B(z) and o’ : B(z') where p: © =4 2/, but B(z) and B(z')
are not necessarily definitionally (judgmentally) equal. Another derivable rule is
that a function f: (z : A) — B(z) must preserve identity: apd; : (p:x =4 2) —

fla) =7 f().

2.1 Rules for combinatory logic as a 1-hit

The formation rule states that CL is a type. The introduction rules are divided into
two parts: the types of the point constructors K, S : CL and app : CL — CL — CL
and the types of the path constructors (for combinatory conversion)

122 P. Dybjer;, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119—134
Keonw (LL', y: CL) — app(app(K,x), y) =CL T
Sconv : (%3, 2 : CL) — app(app(app(S, z),), z) =cr app(app(z, 2), app(y, 2))
The other rules of combinatory conversion (reflexivity, transitivity, symmetry, ap-
plication preserves equality) follow from the fact that =cr, is an identity type.
The elimination rule for CL expresses how to define a function f : (z : CL) —
C(z) by structural induction on the point and path constructors (showing that it
preserves identity). This rule has the assumptions K : C(K),S : C(S),app : (x :
CL) —» C(z) — (y : CL) — C(y) — C(app(z,y)), and also
Keonv : (2,9 : CL) = (: C(2)) = (5 : C(y))
— af)p(app(K, .17), af)p(K> K> €, j)a Y, ?j) :gcom(z,y) T
Seonv : (#,9,2: CL) = (& : C(2)) = (5: C(y)) = (2: C(2))
— app(app(app(S, z),y), app(app(S,), app(S, S, 2, 2), ¥, §), 2,)
:g:U,L,U(x7y7z) aﬁp(app($a Z)a af)p(x7 i:a 2y 5)7 app(yv Z)v af)p<y7 ?jv 2, 5)))

The equality rules are

fK)=K
f(8)=5
f(app(z,y)) = app(z, f(x),y, [(y))
apd ;(Keono (7,) = Keonw (2, y, f(2), f(¥))
)

2.2 Setoid model

The above theory, dependent type theory with (z : A) — B(z), a =4 o/, and CL, has
a setoid model [11]. In this model, a type is interpreted as a setoid A consisting of
a set Ag together with an equivalence relation R. Here we represent an equivalence
relation as a binary family of sets (A (z,2’))y27c4, such that A;(z,2’) is inhabited
iff R(x,2’) holds and empty otherwise. Moreover, a setoid map between two setoids
A = (Ap, A1) and B = (By, By) is a function fy : Ag — By together with a proof
that it preserves the equivalence relation: fy : (A1(z,2")) — Bi(f(z), f(2)).

There are two reasons for this representation. Although we officially use set
theory as the metalanguage for our model constructions, we conjecture that the
construction can be carried out in extensional type theory, where an equivalence
relation will be implemented by a family of types. (Cf Hofmann and Streicher’s
similar claim [12] about their groupoid model.) However, there is another advantage:
the setoid model can then be viewed as a truncated version of the groupoid model.
The set of objects Ag together with the hom-sets Aj(z,2’) of a groupoid form
a setoid. In the sequel we will not distinguish between the family A; and the
equivalence relation R which it represents. (We also remark that extensional type
theory has a direct interpretation in classical set theory [4], so that type-theoretic
notation can be read off as official set theory.)

See Moeneclaey [18] for the details of the construction of a category with families

P. Dybjer, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119-134 123

[6] of setoids and setoid maps which supports dependent function types, intensional
identity types, and CL. Suffice it here to say that we interpret the type CL as the
setoid (CLg, CL;1) where CLy is an inductive type generated by K, S, and app and
CL; is an inductive family [5,4] generated by Kcony and Scony, and the constructors
for transitivity, reflexivity, symmetry, and preservation of equality by app.

3 A Schema for 1-Hits

We now ask ourselves what introduction rules for points and paths look like in
general. We also construct a setoid model for such a general notion of 1-hit. As
mentioned above we are looking for a schema for hits in the style of the schema
for inductive families [5,4]. The obvious first try is to stay as close as possible to
that schema and stipulate that the type of a point constructor for a hit can have
the same form as the type of a constructor for an inductive type; and the type of a
path constructor for a hit can have the same form as the type of a constructor for
a binary inductive family.
The general form of the type of a constructor for an inductive type H is

(x1: A1) = - = (T Ap(21, -+, 1))

— (Bi(z1,...,2m) > H) = -+ = (Bp(z1,...,2p) - H) - H
where A; is a type, ..., Ap(z1,...,2;m—1) is a type if (z1 : A,..., Zmo1
Ap—i1(x1, ... Tm—2)), and Bi(x1,...,Zm),...,Bp(x1,...,2y) are types if x;
Al,... @y o Ap(x1,...,2m—1), and all those judgments are true in the theory

without the rules for H. So A; and B; do not depend on H.

This general form is obtained by specializing the schema for inductive families
[5,4] to the case of inductive types. We remark that B; can in fact be any sequence
of types. We call z; : A; a non-inductive premise (or side condition) and y; :
Bj(z1,...,z,) — H an inductive premise. If Bj is the empty sequence for all
j, then we have an ordinary or finitary inductive definition, otherwise we have a
generalized inductive definition.

Note that this is only a mild generalization of the type of the constructor of the
W-type [15], which is obtained by setting m = n = 1. In fact, in extensional type
theory any inductive type with constructors of the above form is equivalent to a
W-type. This is a special case of a more general theorem about the encoding of
strictly positive inductive types as W-types [7].

However, a complication arises in the setoid interpretation of generalized induc-
tive definitions of a hit H. Assume for example that H has a point constructor
¢o : (B — H) — H and that it is interpreted by the set of points Hy and the family
of sets of paths Hj (x, y) for z,y € Hp. Since functions must preserve the equivalence
relation, we expect the type of the interpreted constructor for Hy to be

coo: (f € By — Ho) = ((z,2" € By) = Bi(z,2") — Hi(f(2), f(2"))) — Hyo

(Note that this is a typing in the metalanguage and that we use ”€” rather than
7" for set/type membership.) Since H; will be interpreted as an inductive family,
we conclude that Hy and H; are simultaneously defined by an inductive-inductive

124 P. Dybjer;, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119—134

definition. However, we prefer not to complicate the metatheory - after all the
theory of inductive-inductive definitions is complex [20,19]. For this reason, we
choose here to restrict to the simpler case of finitary hits which still cover most hits
in the HoTT-book [22], see Section 5.3. As the reader will see, already the theory
of finitary 2-hits is quite complex, and we think that it is preferable to leave the
additional complexity of generalized inductive definitions to future work.

3.1 A schema for point constructors

The general form of a type of a point constructor for a finitary hit is

co:(x1: A1) == (xm: Ap(21,...,2p—1)) 2 H—---—>H—>H
where A; is a type, ..., and A, (21,...,Zm-1) is a type if x1 @ Ay,..., Tpm-1 :
Apm—1(x1,...,xm—2), all those judgments being true in the theory without the rules
for H.

3.2 A schema for path constructors

The general form of the type of a path constructor for a finitary hit is:

c1:(x1:B1) = - = (xn : Bp(x1,...,20))
= (@ :H) = = (yo - H)
%pl<x17'"7xn7y17"‘7yn/) —H ql(xlw"?xnayl?"wyn/)
_>pn”(331a--~733m?/17~~-;yn’) =H qn”(xh'"7xn7y17"'7yn')
—>p/(x13"')xnaylw"ayn’) —H q/(mlv"'axnaylw'wyn')

where neither H nor =y may appear in B;. Moreover, the terms

pl(xlv"'7xn7y17'"7yn’)7Q1<x17'"7$n7y17"'7yn'>7
pn”(l‘la' s Ty Yy e e 7yn')aqn”<xla o Ty Y1, - 'ayn’))
p/(xlv‘ < Tns Y1, .- 7yn’)7q/(1’1,~ - Tny Y1, - - -,yn’)

are point constructor patterns built up according to the following syntax

b=y | CO(ala"'aamvplv"'7pk)

where y : H is a variable among y1,...,¥y,, where p; : H are point constructor
patterns, and where z1 : By,...,zn @ Bp(x1,...,2,) F a; @ Ai(ar,...,a;—1) are
terms built without using any rule for H.

Note that if we delete the second line of the type of the path constructor c;, the
schema looks exactly like the schema for constructors for binary finitary inductive
families [5] (except that the present schema allows only point constructor patterns
and not general terms for the p;). However, we now ask ourselves whether H can
appear in a side-condition Bj. Unfortunately, it cannot appear in an arbitrary way,

P. Dybjer, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119-134 125

since a negative occurrence of H could lead to a contradiction. Therefore we simply
forbid H to appear in B; and have a separate list of premises of the form g, : H.

3.3 A simplified form for point and path constructors

In order to simplify the presentation of the elimination and equality rules, we only
spell out the special case with one point constructor with m = 1 (one side condition)
and one inductive premise

c:A—-H—-H

and one path constructor with n =n' =n"” = 1:

c1:(z:B) = (y:H) = plz,y) =n q(z,y) = p'(z,y) =n ¢ (2,y)
We emphasize that this simplification is only a matter of presentation. It is routine
but verbose to generalize this simplified form to the general form for constructors
for ordinary hits. (The general form is of course necessary to get interesting hits.)

3.4 Elimination and equality rules

The elimination rule expresses how to define a function f : (z : H) — C(z) by
structural induction on the points and paths (showing that the function preserves
identity). More specifically, given
o:(z:A) = (y:H) = Cy) = Cleo(z,y))
¢1:(z:B) = (y:H) = (5:Cly))
— (z:p=nq) = To(p) = To(q) = To(¥) =%, (1.5.-) To(d)
where To(p) : C(p) is the lifting of p : H (to be defined below), we can define f by

fleo(z,y)) = co(z,y, f(y))
apd(ci(z,y,2)) =ci(z,y, f(y), z,apd;(z))
Note that the second equality is a definitional equality, rather than only a propo-
sitional one, as in the HoTT-book [22]. This definitional equality will be validated
by the groupoid model below.

3.5 The lifting function

We denote the ”lifting” of a point constructor pattern p : H by To(p) : C(p). The
idea is that To(p) will be equal to f(p), but the latter is not defined yet. For example
the liftings of the two point constructor patterns in the equation for K.y, are

To(app(app(K,), y)) = app(app(K,), app(K, K, , T), y,)
T()(.ZC) =T
This lifting function for CL is defined by To(x) = Z, To(y) = 7, To(K) = K, To(S) =
S, and To(app(t, t')) = app(t, To(t),t', To(t'))
In the general (simplified) schema the definition of To(p(z,y)) : C(p(z,y)) is by
induction on the form of the point constructor patterns p(x,y):

126 P. Dybjer;, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119—134

To(y) =9
T[)(C()((l,p)) = c~0(a,p, To(p))

Hence, x Bay : Ha?j : C(y) H TO(p('Tay)) : C(p(a?,y)) and Tg(p)(x,y,f(y)) =
f(p(z,y)). Therefore the equation for apd(ci(z,y,2)) above is well-typed.

We refer the reader to Moeneclaey [18] for the setoid model of the schema for
1-hits and again point out that it arises by truncating the groupoid model.

4 The Torus as a 2-Hit

We shall now consider 2-hits with surface constructors in addition to point and path
constructors. An example is the following hit which represents the torus T? as a
CW-complex [22]. It has four constructors:

base : T?
path, : base =12 base
paths : base =12 base
surf : path; o path, =base=base pathy o path;

In order to state its elimination principle we will make use of a heterogeneous
identity type of level 2. Let a,a’ : A, p,p' :a =4 d', 0 : p =4, P/, b : Bla),
/. / .h_Byy . _B :
V:B(d), q:b=,V,¢ :b=) V. We write
b=y
q=p q
for the heterogeneous identity of the paths g, ¢q’.

We can now prove that functions preserve level 2 identities by identity elimina-
tion. If f: (z: A) — C(z) then

_f(@)=Cf(=")
-0

apd?, : (9 :p =g= 1’ p/> — apdf(p) apdf(p,)

_ Now we can formulate the elimination rule for T2. Assume z : T? - C(x) and
b: C(base),p; : b :gathl b,ps : b :gathQ b, and also

~ .~ ! ~ _~:913 ~ /] ~

SiP1O P2 =gy P20 D1
Note the composition o’ of heterogeneous paths, which can be derived from the
J-eliminator. Then there exists a function f : (z : T?) — C(x) such that

The last equation is well typed using the definitional equality apd;(p o ¢) =
apd;(p) o’ apd;(g) which is true in the groupoid model. These equalities (and
similar ones for heterogeneous inverses) are needed for our schema to be well-typed.

P. Dybjer, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119-134 127

5 A Schema for Finitary 2-Hits

5.1 A schema for surface constructors

We shall now present a general schema for 2-hits. The form of point and path
constructors are as for 1-hits. The simplified form of a surface constructor is

co:(x: D) = (y:H) = (2 : p3(x,y) =n ¢3(7,y))

= 91(%, Y, 2) =p,(ey)=nai(ay) M(2,9,2)

- gQ(m’ Y Z) “ps(z,y)=nas(z,y) hQ(x’ Y Z)
(In the general form the four premises « : D,y : H,z : p3 =1 ¢3,2" : g1 =ps=yqu. M1
become four finite (possibly empty) sequences of premises. Cf the general form of
point constructors in 3.1 and path constructors in 3.2.) Here D is a correct type
in a theory without the rules for H, so neither H, =g nor = —,, may appear in
it. Moreover, in the theory extended with H-formation and H-introduction for the
point constructor cg, all of x : D,y : HF ps, qs3,p4, q4, ps5, g5 : H are point construc-
tor patterns (built up from variables by co) and g1, h1, g2, ha are path constructor
patterns built from the following grammar:

g:=z|ci(a,pg)|goglid| g™

where z : ps =g q3 is a path variable, z : D F a : B is a term built without
using rules for H, and p : H is a point constructor pattern under the assumption
x:D,y:H.

Each path constructor pattern comes with some definitional equalities which
are valid in the groupoid model. It would also be natural to add a fourth ”default
constructor” ap,, (corresponding to the arrow part of the point constructor in
the model) to the grammar for path constructor patterns. However, checking the
interpretation of ap., in the groupoid model requires lengthy calculations, which
we have not yet completed.

5.2 Elimination and equality rules

The elimination rule expresses how to define a function f : (z : H) — C(z) by
induction with one case for each of the point, path, and surface constructors. To
this end we assume we have step functions ¢y and ¢; as in the elimination rule for
1-hits and moreover a step function for the surface constructor

G:(x:D)—=(y:H) = (5:C(y)) = (2:p3=nq3)
— (2: To(ps) =< Tolgs)) = (t: 91 =pa—yas h1)

_H _H
= Talgr) =007 00 Ty () -5 Ty (g2) =07 T ()

The lifting T1(g) : To(p) :g To(gq) of a path constructor pattern ¢g : p =g q is
defined in an analogous way to the lifting To(p) of a point constructor pattern:
T1 (Z) =z
Tl(cl (JZ‘, Y, g)) =1 (.CU, Y, TO(y)v g, Tl(g))

128 P. Dybjer;, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119—134

Ti(gog') =Ti(g) o T1(g)
Ty (id) =id
Ti(g™") =Ta(9) ™"
where p~!" denotes the inverse of a path p.
The equality rules for f are:

f(Cg(l’, Z/)) = C~0('7:7 Y, f(y))
apdf(cl(xv Y, Z)) = C~1($7 Y, f(y)a Z, apdf(z))
apd}(ca(z,y, 2,1)) = G(,y, f(y), 2, apd(2), 1, apd}(t))

Note that all three equality rules are definitional equalities which are valid in the
groupoid model. The last equation type-checks for similar reasons as the second
equation (see Section 3.5). We prove by induction on path constructor patterns that
T1(9)(z,y, f(y), 2,apd¢(2)) = apd;(g(z,y,2)). This proof uses the definitional
equalities apd(p o ¢) = apd;(p) o’ apd;(q) and apdf(p_l) = apdf(p)_l/ which
are valid in the groupoid model.

Even without these equalities the types of the two sides of the equalities are
isomorphic. So it would be possible to add the suitable isomorphisms everywhere,
but some coherence problems would arise.

5.8 Hits in the HoTT-book

Many of the hits in the HoTT-book are instances of our general syntactic schema.
For example the interval, the circle, propositional truncation, the suspension, and
the pushout are instances of our schema for 1-hits. The 2-sphere, the torus, the
0-truncation, and the set-quotient are instances of our schema for 2-hits. However,
the alternative definition of the torus using hubs and spokes [22, p192] is not an
instance of our schema for 1-hits, since it breaks the requirement that only point
constructor patterns are allowed in the indices (endpoints) of the types of path
constructors. Moreover, the alternative definition of 0-truncation [22, p199] uses
generalized induction, and is not covered by our schema either.

6 Groupoid Model of the Schema for 2-Hits

We build on Hofmann and Streicher’s [12] groupoid model of intensional type theory
and have also made use of Ruch’s path model [23]. Just as Hofmann and Streicher
we work in set-theoretic meta-language, but conjecture that the model can also be
carried out in extensional type theory. In order to suggest why this is the case we
will write our definitions in a type-theoretic style, and use the fact that extensional
type theory has a set-theoretic model, see e g [4].

A groupoid H (in type-theoretic style, cf the discussion of the representation of
setoids) is a tuple (Hg, Hy, Ha, o,id, (=), tran, refl, sym, wo, w1, o, A, p, 19, 1) where
Hy is the set of objects, Hi(a,a')qaen, is the set of arrows from a to ' and
Ha(f, f')f /ety (a,a) 18 the set of proofs of equality of the arrows f and f’. More-
over, o,id, (—)! denote respectively the composition, identity, and inverse opera-

P. Dybjer, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119-134 129

tions. The remaining components witness that equality of arrows is a congruence
relation (wo,w;) which satisfies associativity («), identity (), p), and inverse laws
(to,t1). When refering to a groupoid we typically omit all components except the
three first: H = (Ho, Hi, HQ).

The usual set-theoretic notion of groupoid is recovered by defining hom-sets as
quotients Hy(a,a’)/R(a,a’), where R(a,a’) is the equivalence relation for arrows
between a and a’ generated by Hy. Furthermore, when we use set-theoretic met-
alanguage we shall for simplicity identify all proofs of equality of arrows so that
0,0 € Ha(f, f') implies & = ¢’. We call this unique element *. This representation
does not only pave the way for a type-theoretic implementation of the groupoid
model, but also for extending our work to the interpretation of 3-hits in a weak
2-groupoid model.

In the groupoid model, a family of types x : A+ C(z) is interpreted as a functor
from the groupoid A into the category of groupoids. We let Cjy denote the object part
of that functor, so that Cy(x) is a groupoid for 2z € Ag, and C denote the arrow part,
so that C1(f) : Co(x) — Co(2') is a transport functor for f € Ay(x,z’). Further-
more, we use the notation Cf(x, 2, f,y,y') for f € Ai(z,2'),y € Co(x),y" € Co(z')
for the set of heterogeneous paths between points in different fibres (mediated by
the transport). Moreover, we write C4(f, f/,0, 2,2, 9,9") where f, f' € A1(z,2'),0 €
As(f, f),z € C(x),7 € C(2'),g € C{(2,7,f), g € C{(z, 7, f") for the heteroge-
neous equality (mediated by the transport) of the heterogeneous paths g, ¢’. A func-
tion f : A — B is interpreted as a functor F' between groupoids. It is represented
type-theoretically by a triple (Fp, Fi, F») representing the object, arrow, and proof
of preservation of equality of arrows parts. Similarly, a function z : A+ f(z) : C(x)
is interpreted as a ”dependent functor” between the source groupoid and the fam-
ily of fibre groupoids. We refer to Hofmann and Streicher [12] for details of the
interpretation.

Note that we justify definitional computation rules also for ap ; and apfc, whereas
in the HoTT-book there is an informal discussion about models leading to those
computation rules being propositional equalities only.

The groupoid model below captures the structure of paths up to homotopy. For
example, one can show that in this model the hit T2 is interpreted by its fundamental
groupoid I1; (T?) (i.e. isomorphic to Z @ Z). However, the groupoid model does not
capture the structure in the higher dimensions. For example, although the 2-sphere
is a 2-hit, the groupoid model does not capture its non-trivial structure in dimension
2. Similarly, although we can show that the circle S! is interpreted by II;(S!) = Z
in the groupoid model, it is trivial in the setoid model.

6.1 Formation rule

Recall the types of the point and path constructors of the schematic 2-hit above:
cop:A—H—H
ci:(x:B)—=(y:H) —wp=npq—p =nq
ca:(z: D)= (y:H) = (2 :p3 =0 ¢3) = 91 =pi=pqu M1 = 92 =ps=pqs "2

130 P. Dybjer;, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119—134

Let the type A be interpreted by the groupoid (Ao, A1, A2), B be interpreted by
the groupoid (By, B1, B2), and D be interpreted by the groupoid (Dy, Dy, D2).
Moreover, p is interpreted as the dependent functor (po,pi,p2) (cf the groupoid
model of terms-in-context, see Hofmann-Streicher or Ruch) consisting of an object,
arrow, and preservation of equality part. And similarly for p’, ¢, p3, g3, P4, q4, P35, 5.
The interpretations of g1, h1, g2, ho are also dependent functors.

We interpret the schematic hit H as the inductively generated groupoid
(Ho, Hy, Hs) the constructors of which will ensure that the types of the point, path
and surface constructors in the theory of 2-hits are interpreted as appropriate depen-
dent functors between groupoids. The key observation is that all the constructors
thus obtained have types which are instances of the general form of a type for a con-
structor of a finitary inductive family [5]. Hence we conjecture that the groupoid
model of 2-hits can be developed inside a core extensional type theory extended
with a schema for these finitary inductive families.

e Hy is inductively generated by a constructor for the object part of the point
constructor

coo € Ag — Hy — Hp
Using coo, a term po(x,y) € Hp, where x € By and y € Hp, can be defined by
induction on the structure of a point constructor pattern p:
yo(z,y) =y
(co(s,1))o(x,y) = coo(s0(x), to(,y))

where sq is provided by the hypothesis that s is a term of type A where H does
not occur, whereas ty is provided by the induction hypothesis.

e H; is inductively generated by:
- a constructor for the object part of the path constructor

cio € (z € By) = (y € Ho) = Hi(po(,y), qo(z,y)) — Hi(py(2,), 4o(z,)
- a constructor for the arrow part of the point constructor:
co1 € (z,2" € Ag) — Ay(z,2") — (y,y € Hp)
— Hi(y,y") — Hi(coo(,y),coo(’,y"))
- constructors for composition, identity, and inverse of paths
o€ (z,y,z € Hy) — Hy(x,y) — Hi(y, 2) — Hi(z, 2)
id € (z € Hy) — Hi(z, z)
()7 € (w,y € Ho) = Hi(z,y) = Hi(y, x)
For a point constructor pattern p and z,z’ € By, y,y € Hy, ex € By(z,2’) and
ey € Hi(y,y') we define p1(ex, ey) € Hi(po(2,y), po(2",y')) by
y1(ex,ey) =ey
(co(s,t))1(ex, ey) = cor(s0(), s0(2), s1(ex), to(z,y), to(2, '), t1(ex, ey))

where s1 comes from the fact that s is a groupoid map and ¢; from the induction
hypothesis.

P. Dybjer, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119-134 131

Similarly for g a path constructor pattern from p to ¢ and x € Dy, y € Hy, z €
Hi((p3)o(z,y), (a3)o(x,y)), we define go(z,y,2) € Hi(po(,y), qo(x,y)) by
20(x,y,2) =2
ci(s,t, 9)o(@,y, 2) = co(s0(2), to(z, y), 96 (2, y, 2))
where sg comes from the fact that s is a term, ¢ty because t is a point constructor

pattern and g¢(, by induction. The equations for identity, composition and inverse
are omitted.

e Hy (representing equality of paths) is inductively generated by
- the object part of the surface constructor
c0 € (x € Do) — (y € Ho) = (2 € Hi((p3)o, (43)0))
— Ha((p4)o, (a4)o, (91)0, (R1)o) — Ha((ps)o, (a5)o, (92)o, (h2)o)
- the a