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Abstract

A higher inductive type of level 1 (a 1-hit) has constructors for points and paths only, whereas a higher
inductive type of level 2 (a 2-hit) has constructors for surfaces too. We restrict attention to finitary higher
inductive types and present general schemata for the types of their point, path, and surface constructors. We
also derive the elimination and equality rules from the types of constructors for 1-hits and 2-hits. Moreover,
we construct a groupoid model for dependent type theory with 2-hits and point out that we obtain a setoid
model for dependent type theory with 1-hits by truncating the groupoid model.
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1 Introduction

Martin-Löf [14] introduced the general identity type former I(A, a, a′), the elements

of which are proofs that a and a′ are equal elements of A. Since A can be any type,

even an identity type, we can iterate this type former and obtain an infinite tower of

higher identity types A, I(A, a, a′), I(I(A, a, a′), p, p′), I(I(I(A, a, a′), p, p′), θ, θ′), etc.
In extensional type theory [15,16] this hierarchy collapses, since it has a rule forcing

I(A, a, a′) to have at most one element. However, this is not so in intensional

type theory [14,17]. As Hofmann and Streicher [12] showed, it has a model, the
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groupoid model, where I(A, a, a′) may have more than one element. In fact, it was

later shown that intensional type theory has infinite-dimensional models in Kan

simplicial sets [25] and Kan cubical sets [2] which support interesting new axioms

such as Voevodsky’s univalence axiom.

A higher inductive type (hit) in the sense of Bauer, Lumsdaine, Schulman, and

Warren is a type where all the iterated identity types are inductively generated.

Higher inductive types occupy a central role in homotopy type theory [22], where

the tower of identity types is given a topological interpretation: a and a′ above are

points in a space, p and p′ are paths from a to a′, θ and θ′ are homotopies (or

surfaces) between p and p′, etc. In this way hits are used as abstract models of

certain spaces, such as the interval, the circle, the sphere, the torus, etc.

Although the idea behind higher inductive types is simple, a comprehensive

account of their syntax and semantics is still lacking. There is work on their cate-

gorical semantics [13,24] and on the semantics of some examples in cubical sets [3].

However, neither of these works answers the question of what a general notion of

higher inductive type is. We quote the HoTT book [22, p 179]:

In this book we do not attempt to give a general formulation of what constitutes

a ”higher inductive definition” and how to extract the elimination rule from such

a definition – indeed, this is a subtle question and the subject of current research.

Instead we will rely on some general informal discussion and numerous examples.

So we would like to know what the types of constructors for hits look like in general

and what the associated elimination and equality rules are. We would also like to

provide a model which shows the consistency of a general theory of higher inductive

types. Actually, what is their foundational status and their relation to Martin-Löf’s

meaning explanations [15,16]? Can type theory with higher inductive types be

modelled in type theory without higher inductive types, by reducing the meaning

of higher inductive types to the standard inductive or inductive-recursive types?

Our goal is thus to formulate a general theory of higher inductive types similar to

the theory of inductive families [5,4] and the theory of inductive-recursive definitions

[8,9,10]. In this paper we take a step towards this goal by limiting ourselves to the

simplest kinds of hits, the 1-hits with only point and path constructors and the

2-hits which may have surface constructors too. Moreover, we limit ourselves to

finitary such constructors in a sense to be made precise below. We propose general

schemata for introduction rules, and a method for deriving the elimination and

equality rules from the introduction rules. The schema for 1-hits can be interpreted

in the setoid model, where types are interpreted as setoids (sets with equivalence

relations). Similarly, we interpret our schema for 2-hits in the groupoid model,

where types are groupoids (categories where all arrows are isomorphisms).

Plan of the paper

In Section 2 we present an example of a 1-hit where the points are combinatory

terms and the paths are proofs that two combinatory terms are convertible. We

also sketch the interpretation of this 1-hit as a setoid. The aim here is to highlight
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the close connection between 1-hits and equational theories. In Section 3 we first

recall the general schema for inductive types and inductively defined binary rela-

tions. Although these schemata admit generalized inductive definitions of infinitely

branching trees (such as the elements of W-types) we explain why we here restrict

attention to 1-hits given by finitary inductive definitions. We propose a schema for

the introduction rules for such types and show how to derive their elimination and

equality rules. In Section 4 we recall how a 2-hit can represent the torus. In Section

5 we propose an extended schema for 2-hits. We also discuss which of the hits in

the HoTT-book are covered by our schema and which are not. In Section 6 we show

how to model 2-hits as groupoids. For reasons of space we do not present the setoid

model of 1-hits separately. Instead the groupoid model is presented in such a way

that the setoid model can be read off as a truncated version of the groupoid model.

In Section 7 we mention some related work and suggestions for further research.

2 Combinatory Logic as a 1-Hit

We start by presenting a small fragment of dependent type theory with dependent

functions types written (x : A) → B(x) and non-dependent ones written A → B.

Identity types are written a =A a′ rather than I(A, a, a′). To this theory we add

the rules for the 1-hit CL with its formation rule, introduction rules for points and

paths, and elimination and equality rules.

We use “mathematical” notation f(x) for function application, f(x, y) for

f(x)(y), etc. Furthermore, x1 : A1, . . . , xn : An � A means that A is a type in

the context x1 : A1, . . . , xn : An. If x : A � C is a type (or term) depending on

a variable x we often (but not always) use the notation C(x) to emphasize this

dependence, and also write C(a) for the result of substituting a for x in C.

The introduction rule for identity types is

refl : (x : A) → x =A x

for any type A. The elimination rule and equality rule (Paulin [21]) are

JC : (x : A) → C(x, refl(x)) → (y : A) → (z : x =A y) → C(y, z)

JC(x, d, x, refl(x)) = d

where x : A, y : A, z : x =A y � C(y, z). The usual rules of equality reasoning

(transitivity, symmetry, replacement of equals for equals) can be derived from these

rules. We shall also derive rules for a heterogeneous identity type a =B
p a′ which lets

us compare elements a : B(x) and a′ : B(x′) where p : x =A x′, but B(x) and B(x′)
are not necessarily definitionally (judgmentally) equal. Another derivable rule is

that a function f : (x : A) → B(x) must preserve identity: apdf : (p : x =A x′) →
f(x) =B

p f(x′).

2.1 Rules for combinatory logic as a 1-hit

The formation rule states that CL is a type. The introduction rules are divided into

two parts: the types of the point constructors K, S : CL and app : CL → CL → CL

and the types of the path constructors (for combinatory conversion)
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Kconv : (x, y : CL) → app(app(K, x), y) =CL x

Sconv : (x, y, z : CL) → app(app(app(S, x), y), z) =CL app(app(x, z), app(y, z))

The other rules of combinatory conversion (reflexivity, transitivity, symmetry, ap-

plication preserves equality) follow from the fact that =CL is an identity type.

The elimination rule for CL expresses how to define a function f : (x : CL) →
C(x) by structural induction on the point and path constructors (showing that it

preserves identity). This rule has the assumptions K̃ : C(K), S̃ : C(S), ˜app : (x :

CL) → C(x) → (y : CL) → C(y) → C(app(x, y)), and also

K̃conv : (x, y : CL) → (x̃ : C(x)) → (ỹ : C(y))

→ ˜app(app(K, x), ˜app(K, K̃, x, x̃), y, ỹ) =C
Kconv(x,y)

x̃

S̃conv : (x, y, z : CL) → (x̃ : C(x)) → (ỹ : C(y)) → (z̃ : C(z))

→ ˜app(app(app(S, x), y), ˜app(app(S, x), ˜app(S, S̃, x, x̃), y, ỹ), z, z̃)

=C
Sconv(x,y,z)

˜app(app(x, z), ˜app(x, x̃, z, z̃), app(y, z), ˜app(y, ỹ, z, z̃)))

The equality rules are

f(K)= K̃

f(S) = S̃

f(app(x, y)) = ˜app(x, f(x), y, f(y))

apdf (Kconv(x, y)) = K̃conv(x, y, f(x), f(y))

apdf (Sconv(x, y, z)) = S̃conv(x, y, z, f(x), f(y), f(z))

2.2 Setoid model

The above theory, dependent type theory with (x : A) → B(x), a =A a′, and CL, has

a setoid model [11]. In this model, a type is interpreted as a setoid A consisting of

a set A0 together with an equivalence relation R. Here we represent an equivalence

relation as a binary family of sets (A1(x, x
′))x,x′∈A0 such that A1(x, x

′) is inhabited
iff R(x, x′) holds and empty otherwise. Moreover, a setoid map between two setoids

A = (A0, A1) and B = (B0, B1) is a function f0 : A0 → B0 together with a proof

that it preserves the equivalence relation: f1 : (A1(x, x
′)) → B1(f(x), f(x

′)).
There are two reasons for this representation. Although we officially use set

theory as the metalanguage for our model constructions, we conjecture that the

construction can be carried out in extensional type theory, where an equivalence

relation will be implemented by a family of types. (Cf Hofmann and Streicher’s

similar claim [12] about their groupoid model.) However, there is another advantage:

the setoid model can then be viewed as a truncated version of the groupoid model.

The set of objects A0 together with the hom-sets A1(x, x
′) of a groupoid form

a setoid. In the sequel we will not distinguish between the family A1 and the

equivalence relation R which it represents. (We also remark that extensional type

theory has a direct interpretation in classical set theory [4], so that type-theoretic

notation can be read off as official set theory.)

See Moeneclaey [18] for the details of the construction of a category with families
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[6] of setoids and setoid maps which supports dependent function types, intensional

identity types, and CL. Suffice it here to say that we interpret the type CL as the

setoid (CL0,CL1) where CL0 is an inductive type generated by K, S, and app and

CL1 is an inductive family [5,4] generated by Kconv and Sconv and the constructors

for transitivity, reflexivity, symmetry, and preservation of equality by app.

3 A Schema for 1-Hits

We now ask ourselves what introduction rules for points and paths look like in

general. We also construct a setoid model for such a general notion of 1-hit. As

mentioned above we are looking for a schema for hits in the style of the schema

for inductive families [5,4]. The obvious first try is to stay as close as possible to

that schema and stipulate that the type of a point constructor for a hit can have

the same form as the type of a constructor for an inductive type; and the type of a

path constructor for a hit can have the same form as the type of a constructor for

a binary inductive family.

The general form of the type of a constructor for an inductive type H is

(x1 : A1) → · · · → (xm : Am(x1, . . . , xm−1))

→ (B1(x1, . . . , xm) → H) → · · · → (Bn(x1, . . . , xm) → H) → H

where A1 is a type, . . . , Am(x1, . . . , xm−1) is a type if (x1 : A1, . . . , xm−1 :

Am−1(x1, . . . , xm−2)), and B1(x1, . . . , xm), . . . , Bn(x1, . . . , xm) are types if x1 :

A1, . . . , xm : Am(x1, . . . , xm−1), and all those judgments are true in the theory

without the rules for H. So Ai and Bj do not depend on H.

This general form is obtained by specializing the schema for inductive families

[5,4] to the case of inductive types. We remark that Bj can in fact be any sequence

of types. We call xi : Ai a non-inductive premise (or side condition) and yj :

Bj(x1, . . . , xn) → H an inductive premise. If Bj is the empty sequence for all

j, then we have an ordinary or finitary inductive definition, otherwise we have a

generalized inductive definition.

Note that this is only a mild generalization of the type of the constructor of the

W-type [15], which is obtained by setting m = n = 1. In fact, in extensional type

theory any inductive type with constructors of the above form is equivalent to a

W-type. This is a special case of a more general theorem about the encoding of

strictly positive inductive types as W-types [7].

However, a complication arises in the setoid interpretation of generalized induc-

tive definitions of a hit H. Assume for example that H has a point constructor

c0 : (B → H) → H and that it is interpreted by the set of points H0 and the family

of sets of paths H1(x, y) for x, y ∈ H0. Since functions must preserve the equivalence

relation, we expect the type of the interpreted constructor for H0 to be

c00 : (f ∈ B0 → H0) → ((x, x′ ∈ B0) → B1(x, x
′) → H1(f(x), f(x

′))) → H0

(Note that this is a typing in the metalanguage and that we use ”∈” rather than

”:” for set/type membership.) Since H1 will be interpreted as an inductive family,

we conclude that H0 and H1 are simultaneously defined by an inductive-inductive
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definition. However, we prefer not to complicate the metatheory - after all the

theory of inductive-inductive definitions is complex [20,19]. For this reason, we

choose here to restrict to the simpler case of finitary hits which still cover most hits

in the HoTT-book [22], see Section 5.3. As the reader will see, already the theory

of finitary 2-hits is quite complex, and we think that it is preferable to leave the

additional complexity of generalized inductive definitions to future work.

3.1 A schema for point constructors

The general form of a type of a point constructor for a finitary hit is

c0 : (x1 : A1) → · · · → (xm : Am(x1, . . . , xm−1)) → H → · · · → H → H

where A1 is a type, . . ., and Am(x1, . . . , xm−1) is a type if x1 : A1, . . . , xm−1 :

Am−1(x1, . . . , xm−2), all those judgments being true in the theory without the rules

for H.

3.2 A schema for path constructors

The general form of the type of a path constructor for a finitary hit is:

c1 : (x1 : B1) → · · · → (xn : Bn(x1, . . . , xn))

→ (y1 : H) → · · · → (yn′ : H)

→ p1(x1, . . . , xn, y1, . . . , yn′) =H q1(x1, . . . , xn, y1, . . . , yn′)

...

→ pn′′(x1, . . . , xn, y1, . . . , yn′) =H qn′′(x1, . . . , xn, y1, . . . , yn′)

→ p′(x1, . . . , xn, y1, . . . , yn′) =H q′(x1, . . . , xn, y1, . . . , yn′)

where neither H nor =H may appear in Bi. Moreover, the terms

p1(x1, . . . , xn, y1, . . . , yn′), q1(x1, . . . , xn, y1, . . . , yn′),

...,

pn′′(x1, . . . , xn, y1, . . . , yn′), qn′′(x1, . . . , xn, y1, . . . , yn′),

p′(x1, . . . , xn, y1, . . . , yn′), q′(x1, . . . , xn, y1, . . . , yn′)

are point constructor patterns built up according to the following syntax

p ::= y | c0(a1, . . . , am, p1, . . . , pk)

where y : H is a variable among y1, . . . , yn′ , where pj : H are point constructor

patterns, and where x1 : B1, . . . , xn : Bn(x1, . . . , xn) � ai : Ai(a1, . . . , ai−1) are

terms built without using any rule for H.

Note that if we delete the second line of the type of the path constructor c1, the

schema looks exactly like the schema for constructors for binary finitary inductive

families [5] (except that the present schema allows only point constructor patterns

and not general terms for the pj). However, we now ask ourselves whether H can

appear in a side-condition Bj . Unfortunately, it cannot appear in an arbitrary way,
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since a negative occurrence of H could lead to a contradiction. Therefore we simply

forbid H to appear in Bj and have a separate list of premises of the form yk : H.

3.3 A simplified form for point and path constructors

In order to simplify the presentation of the elimination and equality rules, we only

spell out the special case with one point constructor with m = 1 (one side condition)

and one inductive premise

c0 :A → H → H

and one path constructor with n = n′ = n′′ = 1:

c1 : (x : B) → (y : H) → p(x, y) =H q(x, y) → p′(x, y) =H q′(x, y)

We emphasize that this simplification is only a matter of presentation. It is routine

but verbose to generalize this simplified form to the general form for constructors

for ordinary hits. (The general form is of course necessary to get interesting hits.)

3.4 Elimination and equality rules

The elimination rule expresses how to define a function f : (x : H) → C(x) by

structural induction on the points and paths (showing that the function preserves

identity). More specifically, given

c̃0 : (x : A) → (y : H) → C(y) → C(c0(x, y))

c̃1 : (x : B) → (y : H) → (ỹ : C(y))

→ (z : p =H q) → T0(p) =
C
z T0(q) → T0(p

′) =C
c1(x,y,z)

T0(q
′)

where T0(p) : C(p) is the lifting of p : H (to be defined below), we can define f by

f(c0(x, y)) = c̃0(x, y, f(y))

apdf (c1(x, y, z)) = c̃1(x, y, f(y), x,apdf (z))

Note that the second equality is a definitional equality, rather than only a propo-

sitional one, as in the HoTT-book [22]. This definitional equality will be validated

by the groupoid model below.

3.5 The lifting function

We denote the ”lifting” of a point constructor pattern p : H by T0(p) : C(p). The

idea is that T0(p) will be equal to f(p), but the latter is not defined yet. For example

the liftings of the two point constructor patterns in the equation for K̃conv are

T0(app(app(K, x), y)) = ˜app(app(K, x), ˜app(K, K̃, x, x̃), y, ỹ)

T0(x) = x̃

This lifting function for CL is defined by T0(x) = x̃,T0(y) = ỹ,T0(K) = K̃,T0(S) =

S̃, and T0(app(t, t
′)) = ˜app(t,T0(t), t

′,T0(t
′))

In the general (simplified) schema the definition of T0(p(x, y)) : C(p(x, y)) is by

induction on the form of the point constructor patterns p(x, y):
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T0(y) = ỹ

T0(c0(a, p)) = c̃0(a, p,T0(p))

Hence, x : B, y : H, ỹ : C(y) � T0(p(x, y)) : C(p(x, y)) and T0(p)(x, y, f(y)) =

f(p(x, y)). Therefore the equation for apdf (c1(x, y, z)) above is well-typed.

We refer the reader to Moeneclaey [18] for the setoid model of the schema for

1-hits and again point out that it arises by truncating the groupoid model.

4 The Torus as a 2-Hit

We shall now consider 2-hits with surface constructors in addition to point and path

constructors. An example is the following hit which represents the torus T2 as a

CW-complex [22]. It has four constructors:

base : T2

path1 : base =T2 base

path2 : base =T2 base

surf : path1 ◦ path2 =base=T2base path2 ◦ path1
In order to state its elimination principle we will make use of a heterogeneous

identity type of level 2. Let a, a′ : A, p, p′ : a =A a′, θ : p =a=Aa′ p′, b : B(a),

b′ : B(a′), q : b =B
p b′, q′ : b =B

p′ b
′. We write

q =
b=Bb′
θ q′

for the heterogeneous identity of the paths q, q′.
We can now prove that functions preserve level 2 identities by identity elimina-

tion. If f : (x : A) → C(x) then

apd2
f : (θ : p =x=Ax′ p′) → apdf (p) =

f(x)=Cf(x′)
θ apdf (p

′)

Now we can formulate the elimination rule for T2. Assume x : T2 � C(x) and

b̃ : C(base), p̃1 : b̃ =
C
path1

b̃, p̃2 : b̃ =
C
path2

b̃, and also

s̃ : p̃1 ◦′ p̃2 =b̃=C b̃
surf p̃2 ◦′ p̃1

Note the composition ◦′ of heterogeneous paths, which can be derived from the

J-eliminator. Then there exists a function f : (x : T2) → C(x) such that

f(base) = b̃

apdf (path1) = p̃1

apdf (path2) = p̃2

apd2
f (surf) = s̃

The last equation is well typed using the definitional equality apdf (p ◦ q) =

apdf (p) ◦′ apdf (q) which is true in the groupoid model. These equalities (and

similar ones for heterogeneous inverses) are needed for our schema to be well-typed.
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5 A Schema for Finitary 2-Hits

5.1 A schema for surface constructors

We shall now present a general schema for 2-hits. The form of point and path

constructors are as for 1-hits. The simplified form of a surface constructor is

c2 : (x : D) → (y : H) → (z : p3(x, y) =H q3(x, y))

→ g1(x, y, z) =p4(x,y)=Hq4(x,y) h1(x, y, z)

→ g2(x, y, z) =p5(x,y)=Hq5(x,y) h2(x, y, z)

(In the general form the four premises x : D, y : H, z : p3 =H q3, z
′ : g1 =p4=Hq4 h1

become four finite (possibly empty) sequences of premises. Cf the general form of

point constructors in 3.1 and path constructors in 3.2.) Here D is a correct type

in a theory without the rules for H, so neither H,=H nor = =H may appear in

it. Moreover, in the theory extended with H-formation and H-introduction for the

point constructor c0, all of x : D, y : H � p3, q3, p4, q4, p5, q5 : H are point construc-

tor patterns (built up from variables by c0) and g1, h1, g2, h2 are path constructor

patterns built from the following grammar:

g ::= z | c1(a, p, g) | g ◦ g | id | g−1

where z : p3 =H q3 is a path variable, x : D � a : B is a term built without

using rules for H, and p : H is a point constructor pattern under the assumption

x : D, y : H.

Each path constructor pattern comes with some definitional equalities which

are valid in the groupoid model. It would also be natural to add a fourth ”default

constructor” apc0 (corresponding to the arrow part of the point constructor in

the model) to the grammar for path constructor patterns. However, checking the

interpretation of apc0 in the groupoid model requires lengthy calculations, which

we have not yet completed.

5.2 Elimination and equality rules

The elimination rule expresses how to define a function f : (x : H) → C(x) by

induction with one case for each of the point, path, and surface constructors. To

this end we assume we have step functions c̃0 and c̃1 as in the elimination rule for

1-hits and moreover a step function for the surface constructor

c̃2 : (x : D) → (y : H) → (ỹ : C(y)) → (z : p3 =H q3)

→ (z̃ : T0(p3) =
C
z T0(q3)) → (t : g1 =p4=Hq4 h1)

→ T1(g1) =
T0(p4)=HT0(q4)
t T1(h1) → T1(g2) =

T0(p5)=HT0(q5)
c2(x,y,z,t)

T1(h2)

The lifting T1(g) : T0(p) =C
g T0(q) of a path constructor pattern g : p =H q is

defined in an analogous way to the lifting T0(p) of a point constructor pattern:

T1(z) = z̃

T1(c1(x, y, g)) = c̃1(x, y,T0(y), g,T1(g))
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T1(g ◦ g′) =T1(g) ◦′ T1(g
′)

T1(id) = id

T1(g
−1) =T1(g)

−1′

where p−1′ denotes the inverse of a path p.

The equality rules for f are:

f(c0(x, y)) = c̃0(x, y, f(y))

apdf (c1(x, y, z)) = c̃1(x, y, f(y), z, apdf (z))

apd2
f (c2(x, y, z, t)) = c̃2(x, y, f(y), z, apdf (z), t, apd

2
f (t))

Note that all three equality rules are definitional equalities which are valid in the

groupoid model. The last equation type-checks for similar reasons as the second

equation (see Section 3.5). We prove by induction on path constructor patterns that

T1(g)(x, y, f(y), z, apdf (z)) = apdf (g(x, y, z)). This proof uses the definitional

equalities apdf (p ◦ q) = apdf (p) ◦′ apdf (q) and apdf (p
−1) = apdf (p)

−1′ which

are valid in the groupoid model.

Even without these equalities the types of the two sides of the equalities are

isomorphic. So it would be possible to add the suitable isomorphisms everywhere,

but some coherence problems would arise.

5.3 Hits in the HoTT-book

Many of the hits in the HoTT-book are instances of our general syntactic schema.

For example the interval, the circle, propositional truncation, the suspension, and

the pushout are instances of our schema for 1-hits. The 2-sphere, the torus, the

0-truncation, and the set-quotient are instances of our schema for 2-hits. However,

the alternative definition of the torus using hubs and spokes [22, p192] is not an

instance of our schema for 1-hits, since it breaks the requirement that only point

constructor patterns are allowed in the indices (endpoints) of the types of path

constructors. Moreover, the alternative definition of 0-truncation [22, p199] uses

generalized induction, and is not covered by our schema either.

6 Groupoid Model of the Schema for 2-Hits

We build on Hofmann and Streicher’s [12] groupoid model of intensional type theory

and have also made use of Ruch’s path model [23]. Just as Hofmann and Streicher

we work in set-theoretic meta-language, but conjecture that the model can also be

carried out in extensional type theory. In order to suggest why this is the case we

will write our definitions in a type-theoretic style, and use the fact that extensional

type theory has a set-theoretic model, see e g [4].

A groupoid H (in type-theoretic style, cf the discussion of the representation of

setoids) is a tuple (H0,H1,H2, ◦, id, (−)1, tran, refl, sym,w0,w1, α, λ, ρ, ι0, ι1) where

H0 is the set of objects, H1(a, a
′)a,a′∈H0 is the set of arrows from a to a′ and

H2(f, f
′)f,f ′∈H1(a,a′) is the set of proofs of equality of the arrows f and f ′. More-

over, ◦, id, (−)1 denote respectively the composition, identity, and inverse opera-

P. Dybjer, H. Moeneclaey / Electronic Notes in Theoretical Computer Science 336 (2018) 119–134128



tions. The remaining components witness that equality of arrows is a congruence

relation (w0,w1) which satisfies associativity (α), identity (λ, ρ), and inverse laws

(ι0, ι1). When refering to a groupoid we typically omit all components except the

three first: H = (H0,H1,H2).

The usual set-theoretic notion of groupoid is recovered by defining hom-sets as

quotients H1(a, a
′)/R(a, a′), where R(a, a′) is the equivalence relation for arrows

between a and a′ generated by H2. Furthermore, when we use set-theoretic met-

alanguage we shall for simplicity identify all proofs of equality of arrows so that

θ, θ′ ∈ H2(f, f
′) implies θ = θ′. We call this unique element ∗. This representation

does not only pave the way for a type-theoretic implementation of the groupoid

model, but also for extending our work to the interpretation of 3-hits in a weak

2-groupoid model.

In the groupoid model, a family of types x : A � C(x) is interpreted as a functor

from the groupoidA into the category of groupoids. We let C0 denote the object part

of that functor, so that C0(x) is a groupoid for x ∈ A0, and C1 denote the arrow part,

so that C1(f) : C0(x) → C0(x
′) is a transport functor for f ∈ A1(x, x

′). Further-

more, we use the notation C ′
1(x, x

′, f, y, y′) for f ∈ A1(x, x
′), y ∈ C0(x), y

′ ∈ C0(x
′)

for the set of heterogeneous paths between points in different fibres (mediated by

the transport). Moreover, we write C ′
2(f, f

′, θ, z, z′, g, g′) where f, f ′ ∈ A1(x, x
′), θ ∈

A2(f, f
′), z ∈ C(x), z′ ∈ C(x′), g ∈ C ′

1(z, z
′, f), g′ ∈ C ′

1(z, z
′, f ′) for the heteroge-

neous equality (mediated by the transport) of the heterogeneous paths g, g′. A func-

tion f : A → B is interpreted as a functor F between groupoids. It is represented

type-theoretically by a triple (F0, F1, F2) representing the object, arrow, and proof

of preservation of equality of arrows parts. Similarly, a function x : A � f(x) : C(x)

is interpreted as a ”dependent functor” between the source groupoid and the fam-

ily of fibre groupoids. We refer to Hofmann and Streicher [12] for details of the

interpretation.

Note that we justify definitional computation rules also for apf and ap2
f , whereas

in the HoTT-book there is an informal discussion about models leading to those

computation rules being propositional equalities only.

The groupoid model below captures the structure of paths up to homotopy. For

example, one can show that in this model the hit T2 is interpreted by its fundamental

groupoid Π1(T
2) (i.e. isomorphic to Z⊕Z). However, the groupoid model does not

capture the structure in the higher dimensions. For example, although the 2-sphere

is a 2-hit, the groupoid model does not capture its non-trivial structure in dimension

2. Similarly, although we can show that the circle S1 is interpreted by Π1(S
1) ∼= Z

in the groupoid model, it is trivial in the setoid model.

6.1 Formation rule

Recall the types of the point and path constructors of the schematic 2-hit above:

c0 :A → H → H

c1 : (x : B) → (y : H) → p =H q → p′ =H q′

c2 : (x : D) → (y : H) → (z : p3 =H q3) → g1 =p4=Hq4 h1 → g2 =p5=Hq5 h2
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Let the type A be interpreted by the groupoid (A0, A1, A2), B be interpreted by

the groupoid (B0, B1, B2), and D be interpreted by the groupoid (D0, D1, D2).

Moreover, p is interpreted as the dependent functor (p0, p1, p2) (cf the groupoid

model of terms-in-context, see Hofmann-Streicher or Ruch) consisting of an object,

arrow, and preservation of equality part. And similarly for p′, q′, p3, q3, p4, q4, p5, q5.
The interpretations of g1, h1, g2, h2 are also dependent functors.

We interpret the schematic hit H as the inductively generated groupoid

(H0,H1,H2) the constructors of which will ensure that the types of the point, path

and surface constructors in the theory of 2-hits are interpreted as appropriate depen-

dent functors between groupoids. The key observation is that all the constructors

thus obtained have types which are instances of the general form of a type for a con-

structor of a finitary inductive family [5]. Hence we conjecture that the groupoid

model of 2-hits can be developed inside a core extensional type theory extended

with a schema for these finitary inductive families.

• H0 is inductively generated by a constructor for the object part of the point

constructor

c00 ∈A0 → H0 → H0

Using c00, a term p0(x, y) ∈ H0, where x ∈ B0 and y ∈ H0, can be defined by

induction on the structure of a point constructor pattern p:

y0(x, y) = y

(c0(s, t))0(x, y) = c00(s0(x), t0(x, y))

where s0 is provided by the hypothesis that s is a term of type A where H does

not occur, whereas t0 is provided by the induction hypothesis.

• H1 is inductively generated by:

· a constructor for the object part of the path constructor

c10 ∈ (x ∈ B0) → (y ∈ H0) → H1(p0(x, y), q0(x, y)) → H1(p
′
0(x, y), q

′
0(x, y))

· a constructor for the arrow part of the point constructor:

c01 ∈ (x, x′ ∈ A0) → A1(x, x
′) → (y, y′ ∈ H0)

→ H1(y, y
′) → H1(c00(x, y), c00(x

′, y′))

· constructors for composition, identity, and inverse of paths

◦ ∈ (x, y, z ∈ H0) → H1(x, y) → H1(y, z) → H1(x, z)

id∈ (x ∈ H0) → H1(x, x)

(−)−1 ∈ (x, y ∈ H0) → H1(x, y) → H1(y, x)

For a point constructor pattern p and x, x′ ∈ B0, y, y
′ ∈ H0, ex ∈ B1(x, x

′) and

ey ∈ H1(y, y
′) we define p1(ex, ey) ∈ H1(p0(x, y), p0(x

′, y′)) by

y1(ex, ey) = ey

(c0(s, t))1(ex, ey) = c01(s0(x), s0(x
′), s1(ex), t0(x, y), t0(x′, y′), t1(ex, ey))

where s1 comes from the fact that s is a groupoid map and t1 from the induction

hypothesis.
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Similarly for g a path constructor pattern from p to q and x ∈ D0, y ∈ H0, z ∈
H1((p3)0(x, y), (q3)0(x, y)), we define g0(x, y, z) ∈ H1(p0(x, y), q0(x, y)) by

z0(x, y, z) = z

c1(s, t, g
′)0(x, y, z) = c10(s0(x), t0(x, y), g

′
0(x, y, z))

where s0 comes from the fact that s is a term, t0 because t is a point constructor

pattern and g′0 by induction. The equations for identity, composition and inverse

are omitted.

• H2 (representing equality of paths) is inductively generated by

· the object part of the surface constructor

c20 ∈ (x ∈ D0) → (y ∈ H0) → (z ∈ H1((p3)0, (q3)0))

→ H2((p4)0, (q4)0, (g1)0, (h1)0) → H2((p5)0, (q5)0, (g2)0, (h2)0)

· the arrow part of the path constructor:

c11 ∈ (x, x′ ∈ B0) → (ex ∈ B1(x, x
′)) → (y, y′ ∈ H0) → (ey ∈ H1(y, y

′))
→ (z ∈ H1(p0(x, y), q0(x, y))) → (z′ ∈ H1(p0(x

′, y′), q0(x′, y′)))
→ H2(p0(x, y), q0(x

′, y′), z ◦ q1(ex, ey), p1(ex, ey) ◦ z′)
→ H2(p

′
0(x, y), q

′
0(x

′, y′), c10(x, y, z) ◦ q′1(ex, ey), p′1(ex, ey) ◦ c10(x′, y′, z′))
· the surface (preservation of equality of arrows) part of the point constructor:

c02 ∈ (x, x′ ∈ A0) → (ex, ex′ ∈ A1(x, x
′)) → A2(x, x

′, g, g′)
→ (y, y′ ∈ H0) → (ey, ey′ ∈ H1(y, y

′)) → H2(y, y
′, ey, ey′)

→ H2(c00(x, y), c00(x
′, y′), c01(x, x′, ex, y, y′, ey), c01(x, x′, ex′, y, y′, ey′))

· the functor laws for the point constructor:

cid0 ∈ (x ∈ A0) → (y ∈ H0) → H2(c00(x, y), c00(x, y), c01(x, x, idx, y, y, idy), idc00(x,y))

c◦0 ∈ (x, x′, x′′ ∈ A0) → (ex ∈ A1(x, x
′)) → (ex′ ∈ A1(x

′, x′′))
→ (y, y′, y′′ ∈ H0) → (ey ∈ H1(y, y

′)) → (ey′ ∈ H1(y
′, y′′))

→ H2(c00(x, y), c00(x
′′, y′′),

c01(x, x
′, ex, y, y′, ey) ◦ c01(x′, x′′, ex′, y′, y′′, ey′),

c01(x, x
′′, ex ◦ ex′, y, y′′, ey ◦ ey′))

· witnesses that H2 is a family of equivalence relations:

tran∈ (x, y : H0) → (u, v, w : H1(x, y))

→ H2(u, v) → H2(v, w) → H2(u,w)

refl∈ (x, y ∈ H0) → (u ∈ H1(x, y)) → H2(u, u)

sym∈ (x, y ∈ H0) → (u, v ∈ H1(x, y)) → H2(u, v) → H2(v, u)

· witnesses (whiskerings) that composition preserves equality:

w0 ∈ (x, y, z ∈ H0) → (u, v ∈ H1(x, y))

→ (w ∈ H1(y, z)) → H2(u, v) → H2(u ◦ w, v ◦ w)
w1 ∈ (x, y, z ∈ H0) → (u, v ∈ H1(y, z))

→ (w ∈ H1(x, y)) → H2(u, v) → H2(w ◦ u,w ◦ v)
· witnesses for the groupoid laws:
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A∈ (x0, x1, x2, x3 ∈ H0) → (u ∈ H1(x0, x1))

→ (v ∈ H1(x1, x2)) → (w ∈ H1(x2, x3))

→ H2((u ◦ v) ◦ w, u ◦ (v ◦ w))
λ∈ (x, y ∈ H0) → (u ∈ H1(x, y)) → H2(u, idx ◦ u)
ρ∈ (x, y ∈ H0) → (u ∈ H1(x, y)) → H2(u, u ◦ idy)
ι0 ∈ (x, y ∈ H0) → (u ∈ H1(x, y)) → H2(u ◦ u−1, idx)

ι1 ∈ (x, y ∈ H0) → (u ∈ H1(x, y)) → H2(u
−1 ◦ u, idy)

It follows immediately that (H0,H1,H2) is a groupoid.

6.2 Introduction rules

The point constructor c0 : A → H → H is interpreted by the functor on groupoids

with object part c00, arrow part c01 and preservation of equality part c02. The

functor laws are witnessed by the constructors cid0 and c◦0.
A groupoid interpreting x =H y is a setoid and hence functors on such groupoids

degenerate to setoid-maps. Hence, the path constructor

c1 : (x : B) → (y : H) → p(x, y) =H q(x, y) → p′(x, y) =H q′(x, y)

is interpreted by the setoid map with underlying function c10 and preservation of

equality part c11.

A groupoid interpreting f =x=Hx′ f ′ has only one object and one arrow (up to

equality). Hence it suffices to state that the constructor for surfaces c2 is interpre-

treted by the constructor c20.

6.3 Elimination and equality rules

To justify the elimination and equality rules we need to construct a dependent

groupoid functor f : (x : H) → C(x) such that

f(c0(x, y)) = c̃0(x, y, f(y))

apdf (c1(x, y, z)) = c̃1(x, y, f(y), z, apdf (z))

apd2
f (c2(x, y, z, w)) = c̃2(x, y, f(y), z, apdf (z), w, apd

2
f (w))

First we define the object part f0 : (x ∈ H0) → C0(x) by H0-elimination:

f0(c00(x, y)) = (c̃0)0(x, y, f0(y)))

Then we define the arrow part

f1 ∈ (x, x′ ∈ H0) → (g ∈ H1(x, x
′)) → C ′

1(g, f0(x), f0(x
′))

where C ′
1 is the heterogeneous equality (between elements of different fibres). This

is done by H1-elimination:

f1(c10(x, y, z)) = (c̃1)0(x, y, f0(y), z, f1(p0(x, y), q0(x, y), z))

f1(c01(x, x
′, e, y, y′, d)) = (c̃0)1(x, x

′, e, y, y′, d, f0(y), f0(y′), f1(y, y′, d))
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where we have omitted the clauses which say that f1 maps an identity on H to an

identity, a composition to a composition, and an inverse to an inverse.

Finally, we prove by H2-elimination that f1 preserves equality of arrows:

f2 : (x, x
′ ∈ H0) → (ex, ex′ ∈ H1(x, x

′))
→ (∗ ∈ H2(x, x

′, ex, ex′)) → C ′
2(∗, f1(x, x′, ex), f1(x, x′, ex′))

Here C ′
2 is a heterogeneous notion of equality between heterogeneous paths. (Note

that there is only one proof of this notion of equality, so all the equations are into

a singleton.)

The calculations required for the verification of the elimination and equality

rules in the groupoid model are lengthy, but routine, and are left out because of

space restrictions. They are included in the full version of the paper which can be

found at http://www.cse.chalmers.se/~peterd/papers/hits.html.

7 Related and further research

Some of the material in this paper (the schema for 1-hits and its setoid model) can

be found in the internship report by Moeneclaey [18]. There is also recent work

by Basold, Geuvers, and Van der Weide [1]. They formulate a schema for 1-hits

and derive elimination rules from the types of the constructors. Their schema is

more restricted than ours (for 1-hits) since their path constructors are witnesses

of equations, whereas our path constructors can also be witnesses of conditional

equations. Moreover, they do not discuss semantics.

The present paper is only a step towards a general theory of hits. There are

several possible generalizations, for example, to 3-hits and their interpretation as

weak 2-groupoids, to hits with generalized induction, and to hits with a more general

class of constructor point and path expressions. In order to get a general theory of

hits in cubical type theory [3], a useful step might be to reformulate our theory of

1-hits and 2-hits using degeneracies and restriction maps.
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