
A Schema for Higher Inductive Types of Level

One and Its Interpretation

Hugo Moeneclaey

hmoenecl@ens-cachan.fr

Under the supervision of :

Peter Dybjer

Department of Computing Science and Engineering,

Chalmers University of Technology.

peterd@chalmers.se

August 31, 2016

Abstract

Here we present a general schema for (non-dependent) higher induc-
tive types built using only point and path constructors (HITs of level 1).
Moreover we only allow ordinary inductive premisses for the constructors.
We prove that the setoid model supports this schema. This model uses
set-theory as a meta-language.

Summary

General context

This report is about dependent type theory, which is a typed λ-calculus allowing
types to depend on terms. In this type system, virtually any specification of
programs is expressible as a type, e.g. there is a type of programs sorting lists
of integers. This type theory was intended as a framework to do constructive
mathematics, and is the basis of the well-known proof assistant COQ.

Two crucial features of this type system are inductive types and identity
types. Inductive types are defined by a list of constructors, and an induction
principle can be extracted from this list. As an example N is defined by two
constructors 0 : N and s : N → N, and have the usual induction principle.
Identity types represent the proposition stating that two elements of a type
are equal, and are called propositional equalities, as opposed to judgmental
equalities (which are sequents stating that two terms are equal). Judgmental

1

equality should imply the propositional one. One of the main questions of
dependent type theory is whether these two equalities should collapsed.

Homotopy type theory is an extension of dependent type theory in which
types are seen as spaces (up to homotopy equivalence). Indeed in this system
propositional and judgmental equalities are distinct, and any type comes with
a family of (propositional) equalities, equalities of proofs of equality, and so on.
The proofs of equality can be seen as paths, and the proofs of equality of proofs
of equality can be seen as homotopies between paths, and so on.

The problem studied

One of the new features of homotopy type theory is higher inductive types
(HITs), that is inductive types defined with constructors for points, paths, and
so on. Several examples of HITs are well-known, but for now there is no defini-
tive general schema for them.

Such a general schema for HITs is of course necessary for homotopy type
theory, which is intended as a computer-friendly foundation of mathematics, in
what is called the univalent foundation program. HITs are often needed in very
general forms in order to build some usual mathematical objects.

The main problem is to determine what is a correct constructor for a HIT
and how to extract the induction principle from a list of (correct) constructors.

Personal contribution

Here we take a small step toward this goal by providing a general schema for
HITs of level 1 (i.e. defined using constructors for points and paths). The main
idea is to express them as usual inductive types in some well-chosen model. This
was the guideline of our research work.

We will artificially restrict the number of HITs cover by the schema, because
we would otherwise need a generalization of usual inductive definitions in the
model called inductive-inductive definitions. We nevertheless manage to give a
(restricted) schema and interpret it in a model.

The value of the contribution

Our solution is valuable because it makes use of elementary tools. It has a
syntactical flavor which is original. Moreover it seems to be adaptable to more
general situations.

Conclusion and further work

One possible next step would be to provide a fully rigorous proof, using a proof
assistant. Then some generalizations could be explored, e.g. dependent HITs
of level 1, simultaneous HITs of level 1, HITs of level 2 and extensions using
inductive-inductive definitions.

2

Of course, the most important next step would be to extend the schema to
arbitrary dimension and interpret it in a well-chosen model.

Contents

1 Introduction 4

2 An example of a HIT of level 1 : Combinatory logic 7

2.1 Notations . 7
2.2 Some informal homotopy type theory 8
2.3 Combinatory logic as a HIT of level 1 9
2.4 Combinatory logic as a setoid . 10

3 The setoid model 11

3.1 Contexts, types and terms . 11
3.1.1 Contexts and non-dependent types 11
3.1.2 Types . 11
3.1.3 Terms . 11

3.2 Some type constructors . 12
3.2.1 Non-dependent Π-types 12
3.2.2 Dependent Π-types . 12
3.2.3 Intensional identity types 12
3.2.4 Heterogeneous identity types 12

4 The general schema for HITs of level 1 12

4.1 Usual inductive families . 13
4.2 Back to combinatory logic . 14
4.3 Building the schema . 15

4.3.1 A first try . 15
4.3.2 Syntax of the constructors 16
4.3.3 The induction principle : why we need a translation . . . 17

4.4 The schema . 17

5 Conclusion 18

A The translations 20

A.1 The translation Tt . 21
A.2 The translation Tf . 22

B The setoid model as a CWF 25

B.1 A category with family . 25
B.1.1 Contexts . 25
B.1.2 Types . 25
B.1.3 Terms . 26
B.1.4 Substitution . 26
B.1.5 Context comprehension 26

3

B.1.6 A first theorem . 26
B.2 Some type constructors . 27

B.2.1 Π-types . 27
B.2.2 Intensional Identity types 27
B.2.3 Heterogeneous identity types 27
B.2.4 Existence of apdf . 28

C The setoid model supports HIT of level 1 28

C.1 Definition . 28
C.1.1 Definition of ObH . 29
C.1.2 Definition of HomH . 29
C.1.3 The constructors . 29

C.2 Sketch of proof for the induction principle 29

D Sketch of level 2 30

D.1 A schema for level 2 . 31
D.1.1 Assumption on the model 31
D.1.2 Syntax of the constructors 31
D.1.3 Extending the translations 32
D.1.4 The induction principle 32

D.2 Towards the interpretation in the groupoid model 33
D.2.1 Presentation . 33
D.2.2 Construction of ObH and HomH 33

D.3 Construction of SurH . 34
D.3.1 Groupoid and equivalence 34
D.3.2 R is a term . 35
D.3.3 S is a term . 35
D.3.4 The surface constructor 36

D.4 Sketch of proof of the induction principle 36
D.4.1 Definition on objects and arrows 36
D.4.2 A sketch of verification that f1 respects SurH 36

1 Introduction

Dependent type theory [16, 18] is a typed λ-calculus which is useful for doing
constructive mathematics [1, 17]. It has also been used for classical mathematics,
an early example being the AUTOMATH project by De Bruijn [4]. The well-
known proof assistant COQ is also based on dependent type theory.

This system makes crucial use of the Curry-Howard correspondence. The
types are seen as propositions, and the terms of a given type are seen as proofs
of the corresponding proposition, and the other way around. There is a crucial
distinction between propositions and judgements in the theory. Propositions
are types, and proving a proposition A is the same as constructing an object of
type A. On the other hand, judgments have one of the following forms

4

• Γ ⊢, meaning that Γ is a well formed context.

• ∆ = Γ ⊢

• Γ ⊢ A, meaning that A is a well formed type in the context Γ

• Γ ⊢ A = A′

• Γ ⊢ a : A, meaning that a is a term of type A in the context Γ

• Γ ⊢ a = a′ : A

and the inference rules of the system lays down how to derive new valid judg-
ments from old ones.

One of the most important features of dependent type theory is inductive
definitions. As an example of such a definition, the type of natural numbers is
the ”free” type N such that 0 : N and that if n : N then s(n) : N. We say that
0 : N and s : N _ N are the constructors of N. There exists a general schema
[6] which describes the form of the type of a constructor in general, and which
extracts an induction principle from such a list of constructors. This principle
gives a precise definition of a ”free” structure having such constructors. In the
case of natural numbers, it is the usual induction principle.

But we cannot use induction to derive judgmental equalities. As an example,
we are not able to derive the judgmental equality x : N, y : N ⊢ x+y = y+x : N.
So we need a propositional equality, that is if Γ ⊢ a : A and Γ ⊢ a′ : A, then we
need a new type Γ ⊢ a =A a′ representing the proposition stating that a and a′

are equal.
In extensional type theory [17] it is assumed that the judgmental and propo-

sitional equalities are inter-derivable. Moreover it is assumed that any two
inhabitants of an identity type are equal. This is called the unicity of identity
proofs. But these assumptions introduce the undecidability of judgments [2].

In intensional type theory, it is only assumed that the judgmental equality
implies the propositional equality, and all judgements are decidable. But a
question arises naturally : the question whether the unicity of identity proofs
is also valid in Intensional Type Theory. The groupoid model of Hofmann and
Streicher [13] shows that it is not.

Moreover the simplicial model by Voevodsky [14] shows that there should not
be unicity of proofs of equality of proofs of equality, and so on. And the family
of equalities, equalities of equalities, ..., of a type forms a weak-∞-groupoid.
This structure plays an important role in homotopy theory, and so the resulting
type system is called homotopy type theory. Roughly, we have the following
correspondence

Type theory Homotopy theory
Types Spaces (up to homotopy equivalence)
Terms Points

Proofs of equality Paths between points
Proofs of equality of proofs of equality Homotopies between paths

... ...

5

The Hott Book [20] describes this theory.
There are two prominent new features in homotopy type theory.

• The univalence axiom, roughly stating that homotopy equivalent types
are equal and vice-versa, that is (A =U B) ∼= (A ∼= B) where U is the
universe i.e. a type of small types.

• Higher inductive types (HITs), which are types defined by induction with
constructors not only for points, but for paths, homotopies between paths,...,
as well.

The univalence axiom is one of the main ingredients of Voevodsky’s univalent
foundations program, which aims to provide a new foundation of mathematics
based on Homotopy Type Theory. It gives a precise meaning to an informal but
often used ”property” : isomorphic structures are equal. However we will not
be concerned with it here.

Instead we will only be concerned with HITs. The aim is to provide a schema
to define HITs by a list of constructors and extract the inductive principle from
this list. Moreover we would like to interpret them as ordinary inductive types
and families in some model. Inductive families are inductive types which can
depend on terms of previously defined types.

There is a paper in preparation by PL Lumsdaine and Michael Shulman [15]
on the categorical semantics of HITs and the interpretation of some HITs in the
cubical set model is know [3]. But there lack a systematic treatment of them.

We take a small step toward this goal by defining HITs of level 1 (built using
point and path constructors). We will restrict to ordinary inductive premisses,
as explained later. So what we would like is a treatment of higher inductive
types of level 1 analogous to the treatment of inductive families in [6] and of
inductive-recursive definitions in [9, 8]. This means that we would like to

(i) Specify the general form of the type of point and path constructors.

(ii) Derive the elimination rule for an arbitrary HIT specified by a list of
point and path constructors.

(iii) Build a set-theoretic model which shows the consistency of intensional
type theory with HITs of level 1 as specified by (i) and (ii)

(iv) Show that this set-theoretic model can be formalized inside extensional
type theory with the schema for inductive families following [6].

In this paper we carry out steps (i) - (iii) and pave the way for carrying
out (iv). This last step means that we need to show the stronger property that
the model used at step (iii) (called the setoid model) can be constructed in
extensional type theory with inductive families. We believe this to be the case.

We also sketch in appendix a similar treatment of HITs of level 2. We use
the groupoid model as defined by Fabian Ruch [19] at step (iii). Note Hoffmann
and Streicher conjecture that even the more complex groupoid model can be

6

defined in extensional type theory, so step (iv) might be possible to carry out
at level 2 as well.

Several examples of HITs are presented in the Hott book [20], and all of
them which do not use constructors of dimension greater than one fit in our
schema. For example the propositional truncation of a type and the circle fit
in our schema. On the other hand the 0-truncation of a type and the torus do
not.

2 An example of a HIT of level 1 : Combinatory

logic

2.1 Notations

Because we are trying to express HITs as usual inductive types in some model,
we need two different formal systems. One is the intensional type theory with
HITs of level 1 defined in this paper. The other is the (set-theoretic version of)
extensional type theory with usual inductive families used for the model. We
present the notations for both of them here.

We describe here the syntax for intensional type theory with HITs of level
1. Types A and terms a are given by

A ::= (x : A) _ A(x) | a =A a | H

a ::= x | a(a) | λ(x : A).a | refla | J | r | s | Rec

where x is a variable, H is a HIT of level 1, r and s its constructors and Rec its
elimination principle.

To state that A is a type in the context Γ we write Γ ⊢ A. To state that a
term a is of type A in the context Γ, we write Γ ⊢ a : A, or simply a : A if Γ is
empty.

We present briefly those types, without displaying the full typing system.
The Π-types (x : A) _ A(x) are the types of dependent functions. Note that

we use the set-theoretic notation f(x) for application instead of the standard
juxtaposition of λ-calculus. The typing rules are as expected.

For the identity types x =A y we have that if Γ ⊢ a : A then Γ ⊢ refla : a =A

a. Moreover J is the elimination principal, that is if Γ, x, y : A, r : x =A y ⊢ C
and Γ, x : A ⊢ d : C[y := x, r := reflx] then Γ, x, y : A, r : x =A y ⊢ J(C, d) : C.

Now, some of the syntax for the (set-theoretic) extensional counterpart in
the model. Here A is a set and a is a member of a set.

A ::= (x ∈ A) → A(x) | IdA(a, a) | P

a ::= x | a(a) | λ(x : A).a | refla | J | r | Rec

7

where P is an inductively generated type or family, r its constructor and Rec
its elimination principle.

Note that the terms follow the same syntax, but there is no ambiguity arising
anyway. We use the usual notation a ∈ A.

The correspondence between the two notations is clear. We actually did
not use directly this extensional type theory, but rather its counterpart in set-
theory. So types are sets, and as an example f ∈ (x ∈ A) → B(x) will simply
indicate that f is a family (fx)x∈A such that for all x ∈ A, we have fx ∈ B(x).
Since our solution is expressing HITs as usual inductive types in the model, we
will use inductively defined sets to represent them.

However, even if we are working with set theory as meta-language in this
report for simplicity (and lack of time), we believe it could be done in extensional
type theory with inductive types.

In both case we will use some standard abbreviations and conventions, as
examples, A _ B stands for (x : A) _ B(x) if B does not depend on x,
A _ A _ A stands for A _ (A _ A), f(x, y) stands for f(x)(y), (x, y : A) _ B

stands for (x : A) _ ((y : A) _ B). We will omit the type for λ-abstraction
and write λx.a if the type of x can be inferred from the context.

We use the same notations for the set-theoretic counterpart.

2.2 Some informal homotopy type theory

Here we give some intuition about the intensional type theory with HITs.
Each type comes with a family of equalities, equalities of equalities, and so

on. Again, assuming Γ ⊢ A and Γ ⊢ p, q : A, then Γ ⊢ p =A q is a new type.
We can moreover iterate this construction, for example if Γ ⊢ r, s : p =A q, then
Γ ⊢ r =p=Aq s is a type.

Any (non-dependent) function, f : A _ B should preserve equality, that is
we have a term

apf : (x, y : A) _ x =A y _ f(x) =B f(y)

We will use standard abuse of notation for apf by omitting x and y, which can
be inferred form the context. So if r : x =A y we abbreviate apf (x, y, r) as
apf (r). This term is built using the eliminator for equality.

Let f : (x : A) _ B(x) be a dependent function, where B(x) is a type
depending on x : A. We need to be able to state that f preserves equality,
but since f(x) : B(x) and f(y) : B(y), the equality f(x) =B f(y) does not
type-check.

Hopefully there is a way around, indeed using the elimination principle of
identity we can define a type u =B

r v from x, y : A, r : x =A y, u : B(x) and
v : B(y), such that if x = y, then u =B

reflx
v is u =B v. These types are called

heterogeneous equalities, or equalities over a path.

8

These heterogeneous equalities allow us to formulate a ”dependent functori-
ality” of f : there exists a term

apdf : (x, y : A) _ (r : x =A y) _ f(x) =B
r f(y)

We will use the same notation as for apf , that is we will abbreviate apdf (x, y, r)
as apdf (r).

2.3 Combinatory logic as a HIT of level 1

We would like to represent combinatory logic quotiented by conversion as a
HIT of level 1, in order to give an intuition about HITs. This will be our
running example. We will denote this type CL. To define it we use three point
constructors

K : CL

S : CL

app : CL _ CL _ CL

so we have the set of terms inductively generated by these constructors. Then
we want to build the equivalence relation corresponding to conversion. For this
we add the two path constructors

Kconv : (x, y : CL) _ app(app(K, x), y) =CL x

Sconv : (x, y, z : CL) _ app(app(app(S, x), y), z) =CL app(app(x, z), app(y, z))

Please note that the rules of reflexivity, symmetry and transitivity of =CL,
as well as the fact that it is preserved through an application, follow from the
elimination for equality, so there is no need to add them explicitly.

We now have a type CL together with some terms having the type of the
specified constructors. What is the induction principle ?

Intuitively, the induction principle of a type states that any element of the
type (or of its equalities, and so on) is build from a constructor, and that there
is as little equality constraint as possible.

More rigorously, if x : CL ⊢ B(x), then in order to inductively generates
f : (x : CL) _ B(x) it is enough to define f on the constructors of CL. Assume
that for each constructor r of CL we have a term r̃ allowing to interpret f on
r, i.e. assume we have :

• The terms K̃ : B(K) and S̃ : B(S)

• A term ˜app of type (x : CL) _ B(x) _ (y : CL) _ B(y) _ B(app(x, y)))

• A term K̃conv of type

(x, y : CL) _ (x̃ : B(x)) _ (ỹ : B(y)) _ ˜app(app(K, x), ˜app(K, K̃, x, x̃), y, ỹ) =B
Kconv(x,y)

x̃

9

• A term S̃conv of type

(x, y, z : CL) _ (x̃ : B(x)) _ (ỹ : B(y)) _ (z̃ : B(z))

_ ˜app(app(app(S, x), y), ˜app(app(S, x), ˜app(S, S̃, x, x̃), y, ỹ), z, z̃)

=B
Sconv(x,y,z)

˜app(app(x, z), ˜app(x, x̃, z, z̃), app(y, z), ˜app(y, ỹ, z, z̃)))

Then there exists a function f : (x : CL) _ B(x) such that

• f(K) = K̃, f(S) = S̃

• f(app(x, y)) = ˜app(x, f(x), y, f(y))

• apdf (Kconv(x, y)) = K̃conv(x, y, f(x), f(y))

• apdf (Sconv(x, y, z)) = S̃conv(x, y, z, f(x), f(y), f(z))

The reader is invited to check that the judgmental equations on f are well-
typed, and that the judgmental equations on apdf are well-typed admitting
the equations on f are true.

This example suggests that HITs of level 1 are inductively generated sets
with inductively generated equivalence relations. So we want a model suitable
to represent equivalence relations, that is a model in which types in the empty
context are sets with an equivalence relation.

Since a set with an equivalence relation is called a setoid, this model will be
called the setoid model.

2.4 Combinatory logic as a setoid

How is CL interpreted in the setoid model ?

Since it is a type in the empty context, we only need a setoid, i.e. a set
ObCL together with an equivalence relation ∼CL.

ObCL is simply the set of terms inductively generated by the corresponding
signature, that is terms t generated by the syntax

t ::= K | S | app(t, t)

Note we a have set-theoretic function app of the right type.
We should have ∼CL the smallest equivalence relation such that :

• If x, y ∈ ObCL, then app(app(K, x), y) ∼CL x

• If x, y, z ∈ ObCL, then app(app(app(S, x), y), z) ∼CL app(app(x, z), app(y, z))

• If x, x′, y, y′ ∈ ObCL, x ∼CL x
′ and y ∼CL y

′ then app(x, y) ∼CL app(x′, y′)

In order to interpret these intuitions, we need dependent functions, equalities
and heterogeneous equalities in the setoid model.

10

3 The setoid model

Here we present the setoid model informally. A rigorous presentation of it as
a category with families (CWF) can be found in appendix B. CWFs provide
a standardized framework to present models of dependent type theory. It was
presented firstly in [7], and it is explored more comprehensively in [12].

3.1 Contexts, types and terms

3.1.1 Contexts and non-dependent types

A context is interpreted as a pair (Γ,∼Γ) such that Γ is a set and ∼Γ an
equivalence relation on Γ. So this is just a setoid.

As explained before a type A in the empty context is also a setoid. We
simply interpret the context x : A by the setoid corresponding to A.

From now on we denote the underlying set of A by A as well, and its equiv-
alence relation by ∼A. We will write a ∈ A when we refer to the underlying set,
and a : A when we refer to the type.

3.1.2 Types

A type B(x) over x : A, is interpreted as

1) A family of sets (Ba)a∈A

2) A family of relations ∼B
a,a′ between Ba and Ba′ for a, a′ ∈ A such that

a ∼A a′, satisfying the following properties :
If b ∈ Ba then b ∼B

a,a b.

If b ∈ Ba, b
′ ∈ Ba′ and b ∼B

a,a′ b′ then b′ ∼B
a′,a b.

If b ∈ Ba, b
′ ∈ Ba′ , b′′ ∈ Ba′′ , b ∼B

a,a′ b′ and b′ ∼B
a′,a′′ b′′ then b ∼B

a,a′′ b′′.

3) A transport operation which is described fully in appendix B.

Note that this is well defined because ∼A is an equivalence relation.

This can be extended in a straightforward way to define a type B over any
context Γ. We use Γ ⊢ B as a notation to say that B is a type over Γ.

3.1.3 Terms

A term of a non-dependent type A is simply interpreted as a point in A

A term b of a dependent type B such that x : A ⊢ B(x) is a family of
elements (ba ∈ Ba)a∈A such that ba ∼B

a,a′ ba′ whenever a ∼A a′.

This can be extended in a straightforward way to define a term of a type B
over any context Γ. We use Γ ⊢ b : B as a notation to say that b is a term of
type B over Γ.

11

3.2 Some type constructors

Here we interpret some common type.

3.2.1 Non-dependent Π-types

If A and B are non-dependent types, the type A _ B is interpreted as the set
of functions from A to B preserving the equivalence relations, together with the
relation f ∼A_B f ′ if and only if for all a, a′ ∈ A such that a ∼A a′, we have
f(a) ∼B f ′(a′).

3.2.2 Dependent Π-types

If x : A ⊢ B(x), then the type (x : A) _ B(x) is interpreted as the underlying
set

{f : (x ∈ A) → Bx | if a ∼A a′ then f(a) ∼B
a,a′ f(a′) }

The equivalence relation is defined as follow : f ∼(x:A)_B(x) f
′ if and only

if
∀a, a′ ∈ A, if a ∼A a′ then f(a) ∼B

a,a′ f ′(a′)

3.2.3 Intensional identity types

If A is a non-dependent type, and p, q : A, then we interpret a type p =A q by
the underlying set :

{

{∗} if p ∼A q

∅ otherwise

There is only one possible equivalence relation.
We see that if f : A _ B is non-dependent function, then there is a term

apf of type (x, y : A) _ x =A y _ f(x) =B f(y), by definition of f .

3.2.4 Heterogeneous identity types

Assume x : A ⊢ B(x), and that we have in the empty context p, q : A, r : p =A q,
u : B(p) and v : B(q). Then we have the type u =B

r v interpreted as

(u =B
r v) =

{

{∗} if u ∼B
p,q v

∅ otherwise

This makes sense because since r : p =A q, we have p ∼A q

It can be seen that there exists a term corresponding to apdf

4 The general schema for HITs of level 1

We now build the schema for HITs of level 1.

12

4.1 Usual inductive families

We recall the schema for inductive families in [6]. We use our set-theoretic
notation because we will use them in the model, which is set-theoretic.

So we want to define an inductive family P : (x :: σ) → Set where x :: σ is
an abbreviation for a sequence of argument xi ∈ σi where σi is a type defined
before P , so that

P : (x1 ∈ σ1) → ...→ (xn ∈ σn) → Set

Such an inductive type is built from a list of constructor ri of the form

ri : (b :: β) → (u :: γ) → P (qi)

where

• b :: β is a sequence of types defined before P . These are non-inductive
premisses.

• γk is of the form (x :: ξk) → P (pk) where :

- ξk is a sequence of types defined before P , under the assumption b :: β

- pk :: σ under the assumption b :: β and x :: ξk.

They are called ordinary inductive premisses if ξk is empty, and generalized
inductive premisses otherwise.

• qi :: σ under the assumption b :: β.

What is the induction principle for such a type ?
Assume given C : (x :: σ) → P (x) → Set. We want to define a function

f : (x :: σ) → (y ∈ P (x)) → C(x, y). Then the induction principle should state
that in order to do so it is enough to have the value of f on each constructor.
So we want that given for each constructor ri a term

r̃i : (b :: β) → (u :: γ) → (v :: δ) → C(p, r(b, u))

where δ (called the induction hypothesis) has the same length as γ and δk is
(x :: ξk) → C(pk, uk(x)), there exists a function f : (x :: σ) → (y ∈ P (x)) →
C(x, y) such that

f(qi, ri(b, u)) = r̃i(b, u, v)

where vk = λx.f(pk, uk(x)).

We now state precisely what it means. For the sake of simplicity, we assume
there is only one constructor and we replace lists of arguments by a unique
argument.

Definition 1. Assume given σ a type without P and a point constructor

r : (b ∈ β) → (u ∈ (x : ξ) → P (p)) → P (q)

with the same constraint as before.
Then we ask that P : (x ∈ σ) _ Set representing this inductive family is

such that

13

• There is a term of the type of r.

• There is a term

Rec : (C : (x :: σ) → P (x) → Set)

→ (r̃ : (b ∈ β) → (u ∈ (x ∈ ξ) → P (p)) → (ũ : (x ∈ ξ) → C(p, u(x))) → C(q, r(b, u)))

→ (x :: σ) → (y ∈ P (x)) → C(x, y)

such that for b ∈ β, u ∈ (x ∈ ξ) → P (p) and C, r̃ of the right type

Rec(C, r̃, q, r(b, u)) = r̃(b, u, λ(x : ξ(b)).Rec(C, r̃, p, u(x)))

Ideally, we want to interpret HITs of level 1 as inductive families in the setoid
model. Since our meta-language is set-theory we need to interpret inductive
families as families of sets. Such an interpretation is provided by [5].

From now on we will use these inductively defined families of sets. Their
constructors are set-theoretic functions, possibly dependent. Note that there is
unicity (in the set-theoretic sense) of a function defined by set-theoretic induc-
tion.

4.2 Back to combinatory logic

We can rephrase the definitions of ObCL and ∼CL as instances of this schema.

We generate the set ObCL inductively using three (set-theoretic) constructors

K : ObCL

S : ObCL

app : ObCL → ObCL → ObCL

We now generate an inductive family of sets HomCL : ObCL → ObCL → Set.
We will then define CL as the setoid (ObCL,∼CL) with for x, x′ ∈ ObCL, x ∼CL

x′ if and only if HomCL(x, x
′) is inhabited.

We use several constructors for HomCL :

• the path constructors

Kconv : (x, y ∈ ObCL) → HomCL(app(app(K, x), y), x)

Sconv : (x, y, z ∈ ObCL) → HomCL(app(app(app(S, x), y), z), app(app(x, z), app(y, z)))

• the constructors stating that ∼CL is an equivalence relation

Id : (a ∈ ObCL) → HomCL(a, a)

−1 : (a, b ∈ ObCL) → HomCL(a, b) → HomCL(b, a)

· : (a, b, c ∈ ObCL) → HomCL(a, b) → HomCL(b, c) → HomCL(a, c)

14

• the constructor stating that the set-theoretic function app is a term

apapp : (x, x′, y, y′ ∈ CL) → HomCL(x, x
′) → HomCL(y, y

′) → HomCL(app(x, y), app(x
′, y′))

Note that all these constructors are instances of the schema in section 4.1.
Moreover it is an ordinary inductive definition since ξ is always empty.

4.3 Building the schema

4.3.1 A first try

Now we want to define the form of constructors for H a non-dependent HIT of
level 1.

A straightforward generalization of the usual notion of inductive type would
be to use point constructors of the same form as the usual type constructors,
and path constructors of the form

si : (b :: β) _ (u :: γ) _ (v :: δ) _ q1 =H q2

where

• b :: β is a sequence of types defined before H,

• γi is of the form (x :: ξi) _ H where ξi is a sequence of types defined
before H under the assumption b :: β.

• δi is of the form (x :: ψi) → p1 =H p2 where

- ψi is a sequence of types defined before H under the assumption b :: β

- pi is of type H under the assumptions b :: β, u :: γ and x :: ψi.

• qi are terms of type H under the assumption b :: β and u :: γ

But there is a problem with generalized inductive premisses.
As an example, we try to define in the setoid model H a HIT having a

constructor r : (σ _ H) _ H. We need to generate a set ObH , intended as the
underlying set of H. We do not want to generate ObH using the set-theoretic
constructor (where σset is the underlying set of σ)

r : (σset → ObH) → ObH

because by doing so, we will generates a new point in ObH for every function
from σset to ObH . But some of these functions might not be terms, because
they might not preserve equivalence. And so we will generate too many points
in ObH .

15

So we would like to rather use a constructor (where σeq(x, x
′) is a singleton

if x ∼σ x
′ and empty otherwise)

r′ : (f : σset → ObH) → ((x, x′ : σset) → σeq(x, x
′) → HomH(f(x), f(x′))) → ObH

But then we cannot generate ObH and HomH one after the other, we have to
generate them at once. A close inspection of the general case shows that we are
dealing with some kind of inductive-inductive definition [11] of ObH : Set and
HomH : ObH → ObH → Set.

Inductive-inductive definitions are a (recent) generalization of usual induc-
tive definitions allowing simultaneous inductive definitions of A : Set and B :
A → Set. We restrict the schema to ordinary inductive premisses, and leave
the extension to generalized induction with inductive-inductive definitions as a
possible future extension. A key problem is to make sure that the inductive-
inductive definitions we need are valid, e.g. by constructing a set-theoretic
model of them. One would need to check whether the thesis by Fredrik Nord-
vall Forsberg [10] covers this case, and otherwise try to extend his work, if
possible.

4.3.2 Syntax of the constructors

We now define the form of the constructors. For the sake of simplicity we will
assume there is only one constructor on each level. Moreover we will restrict
lists of arguments to one argument.

A (non-dependent) higher inductive type H is given by a point constructor
r of the form

r : α _ H _ H

where there is no occurrences of H in α. This means that α has been defined
before H.

We also have a path constructor s of the form

s : (a : β) _ (b : H) _ p =H q _ p′ =H q′

where there is no occurrences of H in β. Moreover we ask for p, q, p′, q′ to
be built using only variables a and b, λ-abstraction, application and the point
constructor. We will call such a term a r-term.

Note that, as an example, r could have any finite number of arguments of
type without H, or of type H, and similarly for s. The next definitions and
properties could be extended in a straightforward way. Moreover we could have
used any (finite) number of point and path constructors with the right form.
These restrictions are just here to clarify notation.

Remark 1. Note we are only able to use constructors of strictly lesser di-
mension in the definition of a constructor. All examples in the Hott book [20]
satisfies this restriction.

16

4.3.3 The induction principle : why we need a translation

Assume x : H ⊢ B(x). We want to know how to define a term f : (x : H) _

B(x) using the induction principle. Intuitively the value of f on each constructor
is enough to define f on all H. We try to make this statement precise.

For point constructor the situation is the same as for usual induction, we
need a term

r̃ : (x : α) _ (y : H) _ B(y) _ B(r(x, y))

and f will be such that f(r(x, y)) = r̃(x, y, f(y)).

But for path constructor the situation is a bit trickier. As an example if
we have a path constructor s : (a : β) _ p′ =H q′. Morally we should provide
something like s̃ : (a : β) _ f(p) =B

s(a) f(q
′), to define the action of f on

equalities. But f is not defined yet !

Hopefully there is a way around : we are able to define, using r̃, a translation
Tt predicting the value of f at any given r-term.

Since we need to extend Tt to any r-term in order to do a proper induction
on r-term, Tt is rather complicated. But the core idea is simply that any
term should have a duplicate which is more-or-less the corresponding induction
hypothesis. The key case is Tt(r) = r̃.

Remark 2. As an example, this translation provides the terms for the induction
principle of CL in section 2.3.

To sum up strictly what we need,

• We have a translation Tt such that if p is a r-term and x : β, y : H ⊢ p : H
then

x : β, y : H, ỹ : B(y) ⊢ Tt(p) : B(p)

• If f : (x : H) _ B(x) is such that f(r(x, y)) = r̃(x, y, f(y)) then

x : β, y : H ⊢ f(p) = Tt(p)[ỹ := f(y)] : B(p)

So we are indeed predicting the value of f .

We refer the reader to the appendix A for a description of this translation.
Now we are able to define completely the schema.

4.4 The schema

Definition 2. Assume given any point constructor

r : α _ H _ H

where there is no occurrence of H in α, and any path constructor

s : (a : β) _ (b : H) _ p =H q _ p′ =H q′

where there is no occurrences of H in β and p, q, p′, q′ are r-terms of type H
under the assumptions a : β and b : H.

17

A model supports H if there exists a type H in the empty context such that :

• There exist terms having the type of the constructors in the empty context.

• There exist a term Rec of type

Rec : (B : H _ Set) _ (r̃ : (x : α) _ (y : H) _ B(y) _ B(r(x, y)))

_ (s̃ : (x : β) _ (y : H) _ (ỹ : B(y)) _ (z : p =H q) _ Tt(p) =
B
z Tt(q) _ Tt(p

′) =B
s(x,y,z) Tt(q

′))

_ (x : H) _ B(x)

such that, assuming B, r̃ and s̃ of the right type and denoting f the func-
tion λx.Rec(B, r̃, s̃, x) : (x : H) _ B(x), we have

x : β, y : H ⊢ f(r(x, y)) = r̃(x, y, f(y)) : B(r(x, y))

x : β, y : H, z : p =H q ⊢ apdf (s(x, y, z)) = s̃(x, y, f(y), z,apdf (z)) : f(p
′) =B

s(x,y,z) f(q
′)

A model support HITs of level 1 if it supports every such H.

Proof. We check that these equations are well typed. The only part which is
not easy is

x : β, y : H, z : p =H q ⊢ s̃(x, y, f(y), z,apdf (z)) : f(p
′) =B

s(x,y,z) f(q
′)

We need to show that x : β, y : H, z : p =H q ⊢ apdf (z) : Tt(p)[ỹ := f(y)] =B
z

Tt(q)[ỹ := f(y)]
This is true because x : β, y : H ⊢ f(p) = Tt(p)[ỹ := f(y)] : B(p) by corollary

1 in appendix A, assuming f(r(x, y)) = r̃(x, y, f(y)).
Then we know that x : β, y : H, z : p =H q ⊢ s̃(x, y, f(y), z,apdf (z)) :

Tt(p
′)[ỹ := f(y)] =B

s(x,y,z) Tt(q
′)[ỹ := f(y)], and so we can conclude by using

corollary 1.

Remark 3. We will see that in the setoid model there is a unique term obeying
the two equations above.

We have a proof in ordinary λ-calculus notation that the setoid model sup-
ports HITs of level 1 which is presented in appendix C.

5 Conclusion

So we have presented here a general syntactic schema for non-dependent HITs
of level 1, with ordinary inductive premisses.

The first problem we face when trying to extend it to higher inductive types
of higher dimensions is of combinatorial nature, basically to determine what
constructors are to be added in higher dimensions. This difficulty is inherent in
higher category theory.

18

We present suggestions of possible further works :

• Formalize what happens on level 1 using some proof assistant.

• Present a schema for level 2. Appendix D is a sketch of this..

• Extend to dependent HITs and mutual HITs.

• Extend to generalized inductive premisses using inductive-inductive def-
initions. Note that inductive-inductive definitions would allow to define
constructors not necessarily by order of dimensions.

• And of course, extend the schema to arbitrary dimensions !

Ackowledgement

I would like to thank everyone working on dependent type theory at Chalmers
this summer for making this internship so pleasant. More particularly, I thank
Simon Huber and Fabian Ruch for taking the time to answer to my questions.

And last but not least, I thank Peter Dybjer for countless interesting dis-
cussions and valuable suggestions. My first contact with dependent type theory
has been highly enjoyable thanks to him.

References

[1] Peter Aczel. The type theoretic interpretation of constructive set theory.
Studies in Logic and the Foundations of Mathematics, 96:55–66, 1978.

[2] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Undecidability
of equality in the free locally cartesian closed category (extended version).

[3] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cu-
bical type theory: a constructive interpretation of the univalence axiom.
Preprint, December, 2015.

[4] Nicolaas Govert De Bruijn. A survey of the project automath. 1980.

[5] Peter Dybjer. Inductive sets and families in martin-löf’s type theory and
their set-theoretic semantics. Logical frameworks, 2:6, 1991.

[6] Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–
465, 1994.

[7] Peter Dybjer. Internal type theory. In International Workshop on Types
for Proofs and Programs, pages 120–134. Springer, 1995.

[8] Peter Dybjer. A general formulation of simultaneous inductive-recursive
definitions in type theory. The Journal of Symbolic Logic, 65(02):525–549,
2000.

19

[9] Peter Dybjer and Anton Setzer. Indexed induction–recursion. The Journal
of Logic and Algebraic Programming, 66(1):1–49, 2006.

[10] Fredrik Nordvall Forsberg. Inductive-inductive definitions. PhD thesis,
Swansea University, 2013.

[11] Fredrik Nordvall Forsberg and Anton Setzer. Inductive-inductive defini-
tions. In International Workshop on Computer Science Logic, pages 454–
468. Springer, 2010.

[12] Martin Hofmann. Syntax and semantics of dependent types.

[13] Martin Hofmann and Thomas Streicher. The groupoid interpretation of
type theory. In Twenty-five years of constructive type theory (Venice,
1995), volume 36 ofOxford Logic Guides, pages 83–111. Oxford Univ. Press,
New York, 1998.

[14] Chris Kapulkin, Peter LeFanu Lumsdaine, and Vladimir Voevodsky. The
simplicial model of univalent foundations. arXiv preprint arXiv:1211.2851,
2012.

[15] PL Lumsdaine and Michael Shulman. Higher inductive types. preparation
(cit. on pp. 3, 6, 26), 2013.

[16] Per Martin-Löf. An intuitionistic theory of types: Predicative part. Studies
in Logic and the Foundations of Mathematics, 80:73–118, 1975.

[17] Per Martin-Löf. Constructive mathematics and computer programming.
Studies in Logic and the Foundations of Mathematics, 104:153–175, 1982.

[18] Per Martin-Löf. Intuitionistic Type Theory: Notes by Giovanni Sambin of
a series of lectures given in Padova, June 1980. 1984.

[19] Fabian Ruch. The path model of intensional type theory. 2015.

[20] Vladimir Voevodsky et al. Homotopy type theory: Univalent foundations
of mathematics. Institute for Advanced Study (Princeton), The Univalent
Foundations Program, 2013.

A The translations

Here we present the translations necessary to state the induction principle for
a HIT called H.

20

A.1 The translation Tt

Here we assume x : H ⊢ B(x). We call a simple type a type built using H, Π-
types and types in which H does not occur. We say that a term is simply-typed
if it is typed by a simple type.

Definition 3. We define a translation T on pairs (p, β) such that Γ ⊢ p : β and
β is a simple type. By induction on β :

• T (p, β) = β if H does not occur in β.

• T (p,H) = B(p).

• T (p, (x : P) _ Q(x)) = (x : P) _ T (p(x), Q(x)) if H does not occur in
P .

• T (p, (x : P) _ Q(x)) = (x : P) _ (x̃ : T (x, P)) _ T (p(x), Q(x)) other-
wise.

Remark 4. If we have a point constructor r : α _ H _ H where H does not
occurs in α, then T (r, α _ H _ H) = (x : α) _ (y : H) _ B(y) _ B(r(x, y)).
This is precisely the type of the term r̃ required for a definition by induction.

Lemma 1. If Γ ⊢ p : β then Γ ⊢ T (p, β).

Definition 4. We now define a translation T from context made of simple type
to context. By induction on the context :

• T (∗) = ∗.

• T (Γ, x : P) = T (Γ), x : P if H does not occur in P .

• T (Γ, x : P) = T (Γ), x : P, x̃ : T (x, P) otherwise.

Proposition 1. Assume p is a r-term built simply-typed using variables, and
that we have r̃ : T (r, α _ H _ H). Moreover β is a simple type.

If Γ ⊢ p : β then there is a term Tt(p) such that T (Γ) ⊢ Tt(p) : T (p, β).

Proof. By induction on the term

If the rule is an axiom on a variable x then we take the variable x̃ or x
depending on whether H does occur in the type of x.

If it is the constructor r we required a term r̃ suitable as Tt(r).

If the rule is a λ-introduction Γ ⊢ λx.p : (x : P) _ Q(x) then we have by
induction hypothesis :

If H does not occurs in P

T (Γ), x : P ⊢ Tt(p) : T (p,Q(x))

So

21

T (Γ) ⊢ λx.Tt(p) : (x : P) → T (p,Q(x))

but (λx.p)(x) = p so it is the right type.
If H does occurs in P

T (Γ), x : P, x̃ : T (x, P) ⊢ Tt(p) : T (p,Q(x))

So

T (Γ) ⊢ λxλx̃.Tt(p) : (x : P) → (x̃ : T (x, P)) → T (p,Q(x))

but (λx.p)(x) = p so it it is the right type.

if the rule is an application : Γ ⊢ p(q) : Q(q) with Γ ⊢ p : (x : P) _ Q(x)
and Γ ⊢ q : P .

By induction hypothesis if H does not occurs in P

T (Γ) ⊢ Tt(p) : (x : P) → T (p(x), Q(x))

so
T (Γ) ⊢ Tt(p)(q) : T (p(q), Q(q))

Because of lemma 2, see below.
If H does occurs in P

T (Γ) ⊢ Tt(p) : (x : P) → (x̃ : T (x, P)) → T (p(x), Q(x))

and T (Γ) ⊢ Tt(q) : T (q, P) so T (Γ) ⊢ Tt(p)(q, Tt(q)) : T (p(q), Q(q)), again
by lemma 2, see below.

Now we display the auxiliary lemma used before.

Lemma 2. Assume Γ ⊢ p : β where β is a simple type, Γ is a context made
of simple types, x : P is in Γ and Γ ⊢ q : P , then T (p, β)[x := q] = T (p[x :=
q], β[x := q]).

Proof. This is a straightforward induction on β.

A.2 The translation Tf

In this section we assume a point constructor r : α _ H _ H together with
r̃ : T (r, α _ H _ H).

Moreover we assume a term f : (x : H) _ B(x) such that x : α, y : H ⊢
f(r(x, y)) = r̃(x, y, f(y)) : B(r(x, y)). We want to show that Tt is related to f .

We recall
Tt(x) = x̃ if x is a variable of a type where H occurs.
Tt(p) = p if p is of a type where H does not occur.
Tt(r) = r̃ if r is the point constructor.

22

Tt(p(q)) = Tt(p)(q) if H does not occur in the type of q.
Tt(p(q)) = Tt(p)(q, Tt(q)) if H does occur in the type of q.
Tt(λx.p) = λx.Tt(p) if H does not occur in the type of x.
Tt(λx.p) = λx.λx̃.Tt(p) if H does occur in the type of x.

Definition 5. We define a translation Tf on pairs (p, β) such that Γ ⊢ p : β
and β is a simple type. By induction on β :

• Tf (p, β) = p if H does not occur in β.

• Tf (p,H) = f(p).

• Tf (p, (x : P) _ Q(x)) = λ(x : P).Tf (p(x)) if H does not occur in P .

• Tf (p, (x : P) _ Q(x)) = λ(x : P).λ(x̃ : T (x, P)).Tf (p(x)) otherwise.

Lemma 3. If Γ ⊢ p : P then Γ ⊢ Tf (p) : T (p, P).

Lemma 4. If p =βη p
′ then Tf (p) =βη Tf (p

′) and Tt(p) =βη Tt(p
′)

Proof. The property for Tf is proved by a straightforward induction on the type
of p.

For Tt, we proceed by induction on the term. All case (including the η-
reduction) are straightforward, except Tt((λx.p) q) = Tt(p[x := q]). When H

does not occur in the type of x we have
Tt((λx.p)(q)) = Tt(λx.p)(q) = (λx.Tt(p))(q) = Tt(p)[x := q]
and otherwise
Tt((λx.p)(q)) = Tt(λx.p)(q, Tt(q)) = (λx.λx̃.Tt(p))(q, Tt(q)) = Tt(p)[x :=

q, x̃ := Tt(q)]
We just have to prove that Tt(p[x := q]) is Tt(p)[x := q], or Tt(p)[x := q, x̃ :=

Tt(q)] depending on the type of x. This is done by induction on the term.

So we may assume that p is in normal form to prove property of Tt(p).

Let us call π-type a type which is either H or where H does not occur.

Lemma 5. Assume p is a r-term. If

x1 : P1, ..., xn : Pn ⊢ p : P

with P = (y1 : Q1) → ...→ (ym : Qm) → Q where the Qi, Pi and Q are π-types,
then

x1 : P1, ..., xn : Pn, y1 : Q1, ..., ym : Qm ⊢ Tf (p)(y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =

Tt(p)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) : T (p(y1, ..., ym), Q)

where ”Tf (yi)” appears if and only if H occurs in the type of yi.

Proof. Let us denote Γ = x1 : P1, ..., xn : Pn, y1 : Q1, ..., ym : Qm

By induction on the term :

23

If it is a variable xi, either it has a type without H, then
Γ ⊢ Tt(xi)[x̃i := Tf (xi)] = xi = Tf (xi),
otherwise it is of type H, then
Γ ⊢ Tt(xi)[x̃i := Tf (xi)] = x̃i[x̃i := Tf (xi)] = Tf (xi)

If it is a point constructor it is precisely our hypothesis f(r(x, y)) = r̃(x, y, f(y))

If it is a λ-abstraction λy1.p, then by induction hypothesis we have
Γ ⊢ Tt(p)[x̃1 := Tf (x1), ..., ỹ1 := Tf (y1)](y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
Tf (p)(y2, ”Tf (y2)”, ..., ym, ”Tf (ym))

So if H does not occur in the type of y1 then
Γ ⊢ Tf (λy1.p)(y1, y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
Tf (p)(y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
Tt(p)[x̃1 := Tf (x1), ..., ỹ1 := Tf (y1)](y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
Tt(λy1.p)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](y1, y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”)

Otherwise
Γ ⊢ Tf (λy1.p)(y1, Tf (y1), y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
Tf (p)[ỹ1 := Tf (y1)](y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
(since ỹ1 is not in Tf (p))
Tf (p)(y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
Tt(p)[x̃1 := Tf (x1), ..., ỹ1 := Tf (y1)](y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”) =
Tt(λy1.p)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](y1, Tf (y1), y2, ”Tf (y2)”, ..., ym, ”Tf (ym)”)

If it is an application p(q), then we assume that it is in normal form. It is
possible to do so because of the last lemma. We first show that q is of type
H or of a type in which H does not occur. It is true because p can only have
arguments of the type H or of a type in which H does not occurs. Indeed, by
induction on p :

- it is not a λ-abstraction because the term is in normal form.
- if it is a variable or the point constructor it is clear.
- otherwise it is an application p = p′(q′) and is true for p′ by induction so

it is true for p.

So we have Γ ⊢ Tt(q)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)] = Tf (q).

Then we know by induction hypothesis
Γ ⊢ Tf (p)(x, ”Tf (x)”y1, Tf (y1), ..., ym, Tf (ym)) =
Tt(p)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](x, ”Tf (x)”, y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”)
Where x is a new variable of the same type as q.

So if H does not occur in the type of q then
Γ ⊢ Tt(p(q))[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
(Tt(p)(q))[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
(since x̃i does not occur in q)
Tt(p)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](q, y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
(by induction hypothesis with x := q)
Tf (p)(q, y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
λx.Tf (p(x))(q, y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
Tf (p(q))(y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”)

24

And if H does occur in the type of q then
Γ ⊢ Tt(p(q))[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
Tt(p)(q, Tt(q))[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
since Tt(q)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)] = Tf (q)
Tt(p)[x̃1 := Tf (x1), ..., x̃n := Tf (xn)](q, Tf (q), y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
Tf (p)(q, Tf (q), y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
λx.λx̃.Tf (p x)(q, Tf (q), y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
Tf (p(q))[x̃ := Tf (q)](y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”) =
since x̃ does not occur in Tf (p(q))
Tf (p(q))(y1, ”Tf (y1)”, ..., ym, ”Tf (ym)”)

Here we state a corollary which is useful for us.

Corollary 1. Assume x : β, y : H ⊢ p : H where p is a r-term and H does not
occur in β, then we have x : β, y : H ⊢ Tt(p)[ỹ := f(y)] = f(p) : B(p).

B The setoid model as a CWF

Here we present the (set-theoretic) setoid model as a CWF. This section is
largely based on the presentation of the groupoid model by Fabian Ruch [19].

B.1 A category with family

B.1.1 Contexts

A context is interpreted as a pair (Γ,∼Γ) such that Γ is a set and ∼Γ an
equivalence relation on Γ.

A substitution morphism from (Γ,∼Γ) to (∆,∼∆) is a function f from Γ to
∆ such that if γ ∼Γ γ

′ then f(γ) ∼∆ f(γ′).

The empty context is a singleton with the only possible equivalence relation.
It is denoted ∗.

From now on we denote a context by its underlying set Γ.

B.1.2 Types

A type A over Γ, is interpreted as :

1) A family of sets (Aγ)γ∈Γ

2) A family of relations ∼A
γ,γ′ between Aγ and Aγ′ for γ, γ′ ∈ Γ such that

γ ∼Γ γ
′, satisfying the following properties :

If a ∈ Aγ then a ∼A
γ,γ a.

If a ∈ Aγ , a
′ ∈ Aγ′ and a ∼A

γ,γ′ a′ then a′ ∼A
γ′,γ a.

If a ∈ Aγ , a
′ ∈ Aγ′ , a′′ ∈ Aγ′′ , a ∼A

γ,γ′ a′ and a′ ∼A
γ′,γ′′ a′′ then a ∼A

γ,γ′ a′′.

25

3) A transport operation which for γ ∼Γ γ
′ maps a ∈ Aγ to a+γ′ ∈ Aγ′ , such

that a ∼A
γ,γ′ a

+
γ′ . Furthermore we ask that (a+γ′)

+
γ′′ = a+γ′′ if γ ∼Γ γ′ ∼Γ γ′′

(associativity), and that a+γ = a (identity). This implies the symmetry, that is

(a+γ′)+γ = a+γ = a.

Note that this is well defined because ∼Γ is an equivalence relation.
∼γ,γ is an equivalence relation over Aγ .

We use Γ ⊢ A as a notation to say that A is a type over Γ.

B.1.3 Terms

If Γ ⊢ A, a term a of type A over Γ is interpreted as a family of elements
(aγ ∈ Aγ)γ∈Γ such that aγ ∼A

γ,γ′ aγ′ whenever γ ∼Γ γ
′.

We use Γ ⊢ a : A as a notation to say that a is a term of type A over Γ.

B.1.4 Substitution

Let f : Γ → ∆ be a substitution morphism. Assume ∆ ⊢ A and ∆ ⊢ t : A.
Then we define a type Af by the sets (Af)γ = Af(γ), together with the

relations such that if a ∈ Af(γ) and a′ ∈ Af(γ′), then a ∼Af
γ,γ′ a′ if and only if

a ∼A
f(γ),f(γ′) a

′.

We define a term tf of type Af by (tf)γ = tf(γ).

So we have Γ ⊢ Af and Γ ⊢ tf : Af .

B.1.5 Context comprehension

Let Γ be a context such that Γ ⊢ A, then we define the context Γ.A as the set
{(γ, a)|γ ∈ Γ, a ∈ Aγ} with the equivalence relation (γ, a) ∼Γ.A (γ′, a′) if and
only if γ ∼Γ γ

′ and a ∼A
γ,γ′ a′.

We define p : Γ.A→ Γ as the first projection and q of type Ap over Γ.A by
the second.

It can be checked that Γ ⊢ q : Ap.

B.1.6 A first theorem

Theorem 1. The setoid model is a category with family.

This can be proven in a straightforward fashion, or by using the groupoid
model by Fabian Ruch [19], which is a CWF.

Indeed if we define the set of morphisms of groupoid between γ and γ′ as
a singleton if γ ∼Γ γ′ and the empty set otherwise, and similarly for types,
then we have contexts, types and terms in the groupoid model, because every
groupoid equations are trivially verified in singletons.

So the setoid model is the ”subpart” of the groupoid model in which all sets
of morphisms are supposed of cardinal at most one. In order to prove theorem 1,

26

we only need to check that all the involved operations on types in the groupoid
model preserve this property.

However we will not prove it here.

B.2 Some type constructors

Here we present the interpretation of types useful for our purpose.

B.2.1 Π-types

Assume Γ ⊢ A and Γ.A ⊢ B, then Γ ⊢ Π(A,B) with

Π(A,B)γ = {f : (a ∈ Aγ) → B(γ,a) | if a ∼A
γ,γ a

′ then f(a) ∼B
(γ,a),(γ,a′) f(a

′) }

Let γ ∼Γ γ
′, f ∈ Π(A,B)γ and f ′ ∈ Π(A,B)γ′ . Then f ∼

Π(A,B)
γ,γ′ f ′ if and only

if
∀a ∈ Aγ , ∀a

′ ∈ Aγ′ , if a ∼A
γ,γ′ a′ then f(a) ∼B

(γ,a),(γ′,a′) f(a
′)

Remark 5. We will use Π(P1, ..., Pn) as an abbreviation for Π(P1,Π(P2, ...,Π(Pn−1, Pn)...))

B.2.2 Intensional Identity types

Assume Γ ⊢ A then we define Γ.A.Ap ⊢ IdA by

IdA(γ,a,a′) =

{

{∗} if a ∼A
γ,γ a

′

∅ otherwise

The relation simply connects everything.

B.2.3 Heterogeneous identity types

Assume Γ ⊢ A and Γ.A ⊢ B. We can then define Γ.A.Ap.IdA.Bpp.B < pp,q >

pp ⊢ HIdB by

HIdB(γ,a,a′,r,b,b′) =

{

{∗} if b ∼B
(γ,a),(γ,a′) b

′

∅ otherwise

This makes sense because r ∈ IdA(γ,a,a′), so a ∼A
γ,γ a

′ and (γ, a) ∼Γ.A (γ, a′).
The relation relates any two elements.

It can be checked that these are indeed heterogeneous identity type.

27

B.2.4 Existence of apdf

Assuming Γ ⊢ f : Π(A,B), then we have a term apdf such that

Γ ⊢ apdf : Π(A,Ap, IdA,HIdB < id, app(fp,q)pp, app(fpp,q)p >)

To provide such a term, for each γ ∈ Γ we need a set-theoretic function of
type

(a ∈ Aγ) → (a′ ∈ (Ap)(γ,a)) → (r ∈ IdA(γ,a,a′)) → (HIdB < id, app(fp,q)pp, app(fpp,q)p >)(γ,a,a′,r)

that is

(a ∈ Aγ) → (a′ ∈ Aγ) → (r ∈ IdA(γ,a,a′)) → HIdB(γ,a,a′,r,fγ(a),fγ(a′))

That is assuming a, a′ ∈ Aγ and a ∼A
γ,γ a′, we need fγ(a) ∼B

(γ,a),(γ,a′) fγ(a
′).

This is true by definition of fγ . We omit the proof that this function is a term.

C The setoid model supports HIT of level 1

In the section we use ordinary λ-calculus notation.
Assume given a point and a path constructors.

r : α _ H _ H

s : (a : β) _ (b : H) _ p =H q _ p′ =H q′

We want to define a type in the setoid model interpreting H.

C.1 Definition

We want to define a type in the empty context, so we need a set ObH with an
equivalence relation on it. For this we will inductively generates ObH : Set and
HomH : ObH → ObH → Set. Then we will define, for a, a′ : ObH , that a ∼H a′

if and only if HomH(a, a′) is inhabited.
The notation → is reserved for (dependent) set-theoretic function. If α is a

type in the empty context we denote by αset its underlying set. If a, a′ ∈ αset

we denote

αeq(a, a
′) =

{

{∗} if a ∼α a
′

∅ otherwise

Moreover if Γ ⊢ p : P is a r-terms and we have a set-theoretic interpretation
of r and of the variables in Γ, then we have a set-theoretic interpretation of p.
We will denote p both the r-term and its underlying set-theoretic interpretation,
because the context prevents ambiguity.

28

C.1.1 Definition of ObH

We generate ObH by the constructor

R : αset → ObH → ObH

So we have a set-theoretic function R.

C.1.2 Definition of HomH

We generate HomH by the following list of constructors:

• Reflexivity, symmetry and transitivity

Id : (a ∈ ObH) → HomH(a, a)

−1 : (a, b ∈ ObH) → HomH(a, b) → HomH(b, a)

· : (a, b, c :∈ ObH) → HomH(a, b) → HomH(b, c) → HomH(a, c)

• The fact that R preserves equivalence

apR : (a, a′ ∈ αset) → αeq(a, a
′) → (b, b′ ∈ ObH)

→ HomH(b, b′) → HomH(R(a, b), R(a′, b′))

• And the path constructor

S : (a ∈ β) → (b ∈ ObH) → HomH(p, q) → HomH(p′, q′)

C.1.3 The constructors

We want to check that there are terms r and s in the model.
A term of type α _ H _ H is a function f : αset → ObH → ObH such that

if a ∼α a
′ and b ∼H b′ (that is, HomH(b, b′) inhabited) then f(a, b) ∼H f(a′, b′).

So the set-theoretic function R induces such a term, because of apR.
The set-theoretic function S induces a term because it takes value in an

identity type, where the relation connects everything.

C.2 Sketch of proof for the induction principle

Assume that x : H ⊢ B(x), that is we have a family of sets (Bx)x∈ObH
. Moreover

assume that we have constructors :

r̃ : (x : α) _ (y : H) _ B(y) _ B(r(x, y))

and

s̃ : (x : β) _ (y : A) _ B(y) _ (z : p =A q) _ Tt(p) =
B
z Tt(q) _ Tt(p

′) =B
s(x,y,z) Tt(q

′))

We want to show there exists a term f : (x : H) _ B(x) such that f(r(x, y)) =
r̃(x, y, f(y)). Indeed the equality on apdf is trivial here since it takes value in
singletons.

29

Firstly we want a set-theoretic function f0 : (x : ObH) → Bx. The fact that
we have such a set-theoretic function is true because of the inductive definition
of the set ObH . Indeed we have the underlying function of r̃, denoted by R̃,
is of type (x : αset) → (y : ObH) → By → BR(x,y). So we define f0 by

f0(R(x, y)) = R̃(x, y, f0(y)).

Remark 6. In the model, we have the judgmental unicity of terms defined
by induction. Indeed the underlying function of a term such that f(r(x, y)) =
r̃(x, y, f(y)) have to check the equation above, which determine uniquely such a
function.

We now have to check that if HomH(a, a′) is inhabited, then f0(a) ∼B
a,a′

f0(a
′). We proceed by induction on HomH .

• If the relation is generated by symmetry, transitivity or reflexivity, it easily
follows from the symmetry, transitivity or reflexivity of the relation over
B.

• If the relation is generated by apR, then we have x, x′ ∈ αset such that
x ∼α x′ and y, y′ ∈ ObH , such that HomH(y, y′) is inhabited. So by
induction hypothesis we have f0(y) ∼B

y,y′ f0(y
′). We need to show that

f0(R(x, y)) ∼
B
R(x,y),R(x′,y′) f0(R(x

′, y′)), that is R̃(x, y, f0(y))) ∼
B
R(x,y),R(x′,y′)

R̃(x′, y′, f0(y
′))). This is true by definition of r̃ being a term, that is apdr̃

applied to x, y, f0(y) and x
′, y′, f0(y

′).

• If the relation is generated by S, we have x ∈ βset, y ∈ ObH and
HomH(p, q) is inhabited, and by induction hypothesis f0(p) ∼B

p,q f0(q).

We need to show that f0(p
′) ∼B

p′,q′ f0(q
′). We evaluate S̃ at x, y, and

f0(y), and we know that HomH(p, q) is inhabited, so we have that if
Tt(p)[ỹ := f0(y)] ∼B

p,q Tt(q)[ỹ := f0(b)] then Tt(p
′)[ỹ := f0(y)] ∼B

p′,q′

Tt(q
′)[ỹ := f0(b)]. But a set-theoretic version of lemma 5 gives e.g.

Tt(q
′)[ỹ := f0(y)] = f0(q

′). So we can conclude.

We do not check that the function associating f to such r̃ and s̃ is indeed a
term Rec.

D Sketch of level 2

We present here a very sketchy step toward level 2. The main point is that
things seem to be working similarly to level 1. There is no actual proof, and
some statements might be wrong.

30

D.1 A schema for level 2

D.1.1 Assumption on the model

Assume we have a model of type theory supporting Π-types, intensional identity
types, heterogenous identity paths.

Moreover we need heterogenous identity types of level 2, that is given a, b : A,
x : B(a), y : B(b), p, q : a =A b, u : x =B

p y, v : x =B
q y and i : p =a=Ab q, we

have a type u =
x=By

i v, such that if i is reflexivity then we have a the regular
equality u =x=B

p y v.

If f : (x : A) _ B(x), and we have a, b : A, p, q : a =A b and i : p =a=Ab q,

then there exists apd2
f (i) : apdf (p) =

f(a)=Bf(b)
i apdf (q).

D.1.2 Syntax of the constructors

We want to define a HIT of level 2 called H.
We use a point, a path and a surface constructors of the following forms :

r : α1 _ H _ H

s : (a2 : α2) _ (b2 : H) _ p1 =H q1 _ p2 =H q2

t : (a3 : α3) _ (b3 : H) _ (c3 : p3 =H q3)

_ g1 =p4=Hq4 h1 _ g2 =p5=Hq5 h2

Where

• The αi are without occurrences of H

• The pi and qi are built using variables previously declared of type H or
αi, λ-abstractions, applications and the point constructor. (We recall that
such a term is called a r-term)

• The hi and gi are built using :

- variables previously declared of type H, p =H q, or αi

- λ-abstractions, applications.

- compositions, inverses, identities of paths.

- point and path constructors r and s.

Such a term is called a r, s-path.

Remark 7. Should we authorize e.g. p4 to use path constructors, compositions,
and so on ? The given form is restrictive on the dependencies.

Such a type H should have terms of the type of the constructors in the
empty context. Moreover we want to define its induction principle.

31

D.1.3 Extending the translations

Assume x : H ⊢ B(x). We want to define f : (x : H) _ B(x) using the
induction principle for H. In order to be able to state it correctly we need to
extend the translations.

We extend the translation T on types with identities between r-terms by
defining (for i : p =H q)

T (i, p =H q) = Tt(p) =
B
i Tt(q)

Lemma 6. If Γ ⊢ p : β then T (Γ) ⊢ T (p, β).

Here we need T (Γ) instead of Γ, because we need to interpret some transla-
tions of r-terms Tt(p).

The translation on contexts made of simple types is extended to contexts
built using equalities of r-terms as well.

Proposition 2. Let p and q be r-terms, and c be a r, s-path.
Assuming we have Γ ⊢ c : p =H q then there is a term T 2

t (c) such that
T (Γ) ⊢ T 2

t (c) : Tt(p) =
B
c Tt(q).

The only new cases are compositions, inverses, identities of path. These
cases ought to be axioms on heterogeneous equality.

D.1.4 The induction principle

We present the desired induction principle.
Assume given terms interpreting f on constructors, that is r̃ and s̃ of the

same type as on level 1 and t̃ such that

t̃ : (a3 : α3) _ (b3 : H) _ (b̃3 : B(b3)) _ (c3 : p3 =H q3) _ (c̃3 : Tt(p3) =
B
c3
Tt(q3))

_ (d3 : g1 =p4=Hq4 h1) _ T 2
t (g1) =

Tt(p4)=
HTt(q4)

d3
T 2
t (h1) _ T 2

t (g2) =
Tt(p5)=

HTt(q5)

t(a3,b3,c3,d3)
T 2
t (h2)

there is a function such that :

f(r(a1, b1)) = r̃(a1, b1, f(b1))
apdf (s(a2, b2, c2)) = s̃(a2, b2, f(b2), c2,apdf (c2))

apd2
f (t(a3, b3, c3, d3)) = t̃i(a3, b3, f(b3), c3,apdf (c3), d3,apd

2
f (d3))

The second equation is well-typed (admitting the first equation) because
Tt(p)[b̃2 := f(b2)] = f(p) for p a r-term with variables b2 : H and a2 : α2.

To check that the third one is well-typed (admitting the other two) we need to
show that for g a r, s-path build using variables a3 : α3, b3 : H and c3 : p3 =H q3,
we have to check that T 2

t (g)[b̃3 := f(b3), c̃3 := apdf (c3)] = apdf (g).

Remark 8. Morally, the terms r̃, s̃ and t̃ are simply translations for r, s and
t.

32

D.2 Towards the interpretation in the groupoid model

Here we present some hints toward a proof that the groupoid model (as described
by Fabian Ruch [19]) supports HITs of level 2. Since now there are interesting
things happening in higher dimensions, we want a type in the empty context to
be a groupoid instead of a setoid. A non-dependent function between two such
type is a functor.

D.2.1 Presentation

Assume given some point, path and surface constructors for a non-dependent
HIT of level 2 called H.

We want to interpret H in the groupoid model, so we want a groupoid. For
this we build :

• ObH : Set

• HomH : ObH → ObH → Set

• SurH : (a, b : ObH) → HomH(a, b) → HomH(a, b) → Set

An then we will define the objects of H as ObH and H(a, a′) (the morphism
between a and a′ in H) as HomH(a, a′) quotiented by SurH(a, a′; ,) taken as
an equivalence relation on HomH(a, a′)).

Be careful, the notation HomH is not well chosen here : it does not denote
sets of morphisms in H.

D.2.2 Construction of ObH and HomH

ObH is simply the inductive set generated by a constructor R (corresponding to
r)

R : αset
1 → ObH → ObH

where αset
1 is the underlying set of α1.

HomH is the inductive family generated by

• reflexivity, symmetry and transitivity

Id : (a ∈ ObH) → HomH(a, a)

−1 : (a, b ∈ ObH) → HomH(a, b) → HomH(b, a)

· : (a, b, c ∈ ObH) → HomA(a, b) → HomA(b, c) → HomA(a, c)

• the fact that R is acting on arrows (here αeq
1 (a1, a

′
1) is the set of morphism

in α1 between a1 and a′1) :

apR : (a1, a
′
1 ∈ αset

1) → α
eq
1 (a1, a

′
1) → (b1, b

′
1 ∈ ObH)

→ HomH(b1, b
′
1) → HomH(R(a1, b1), R(a

′
1, b

′
1))

33

• and the path constructor, that is

S : (a2 ∈ αset
2) → (b2 ∈ ObH) → HomH(p1, q1) → HomH(p2, q2)

Note we will omit the beginning and endpoint in apR, abbreviating apR(a1, a
′
1, x, b1, b

′
1, y)

as apR(x, y)

D.3 Construction of SurH

The construction of SurH is more complicated, as expected.

D.3.1 Groupoid and equivalence

These rules are the 2-dimensional part of a groupoid.

• SurH(a, b, ,) is an equivalence

Id : (a, b ∈ ObH) → (p ∈ HomH(a, b)) → SurH(a, b, p, p)

−1 : (a, b ∈ ObH) → (p, q : HomH(a, b)) → SurH(a, b, p, q) → SurH(a, b, q, p)

· : (a, b : ObH) → (p, q, r : HomH(a, b)) → SurH(a, b, p, q) → SurH(a, b, q, r) → SurH(a, b, p, r)

• ObH and HomH form a groupoid

neutr1 : (a, b ∈ ObH) → (p ∈ HomH(a, b)) → SurH(a, b, p, Ida · p)

neutr2 : (a, b ∈ ObH) → (p ∈ HomH(a, b)) → SurH(a, b, p, p · Idb)

assoc : (a, b, c, d ∈ ObH) → (p ∈ HomH(a, b)) → (q ∈ HomH(b, c))

→ (r ∈ HomH(c, d)) → SurH(a, d, (p · q) · r, p · (q · r))

inv1 : (a, b ∈ ObH) → (p ∈ HomH(a, b)) → SurH(a, a, p · p−1, Ida)

inv2 : (a, b ∈ ObH) → (p ∈ HomH(a, b)) → SurH(b, b, p−1 · p, Idb)

• There are whiskerings

wisk1 : (a, b, c ∈ ObH) → (p, q : HomH(a, b)) → (r : HomH(b, c)) → SurH(a, b, p, q)

→ SurH(a, c, p · r, q · r)

wisk2 : (a, b, c ∈ ObH) → (p, q ∈ HomH(b, c)) → (r ∈ HomA(a, b)) → SurH(b, c, p, q)

→ SurH(a, c, r · p, r · q)

34

D.3.2 R is a term

• apR is well defined

congR : (a1, a
′
1 ∈ αset

1) → (x ∈ α
eq
1 (a1, a

′
1)) → (b1, b

′
1 ∈ ObH) → (y, y′ ∈ HomH(b1, b

′
1))

→ SurH(b1, b
′
1, y, y

′) → SurH(R(a1, b1), R(a
′
1, b

′
1),apR(x, y),apR(x, y

′))

• R preserve identity

idR : (a1 ∈ αset
1) → (b1 ∈ ObH) → SurH(R(a1, b1), R(a1, b1),apR(Ida1

, Idb1), IdR(a1,b1))

• R preserve composition

compR : (a1, a
′
1, a

′′
1 ∈ αset

1) → (p ∈ α
eq
1 (a1, a

′
1)) → (p′ ∈ α

eq
1 (a′1, a

′′
1))

→ (b1, b
′
1, b

′′
1 ∈ ObH) → (q ∈ HomH(b1, b

′
1)) → (q′ ∈ HomH(b′1, b

′′
1))

→ SurH(R(a1, b1), R(a
′′
1 , b

′′
1),apR(p · p

′, q · q′),apR(p, q) · apR(p
′, q′))

Please note this imply the symmetry relation.

D.3.3 S is a term

We need a lemma which we have not proven yet but which sounds reasonable.

Lemma 7. Let p(a2, b2) be a r-term of type H build on variables a2 : α2 and
b2 : H.

Assume a, a′ ∈ αset
2 and b, b′ ∈ ObH .

From x ∈ α
eq
2 (a, a′) and y ∈ HomH(b, b′), and we can build p(x, y) : HomH(p(a, b), p(a′, b′))

(where p(a, b) is the underlying point of the term p in a, b).

Here are the constructors stating that S is a term.

• S is well-defined

congS : (a2 ∈ αset
2) → (b2 ∈ ObH) → (y, y′ ∈ HomH(p1, q1)) → SurH(p1, q1, y, y

′)

→ SurH(p2, q2, S(a2, b2, y), S(a2, b2, y
′))

• S acts on arrows

apS : (a2, a
′
2 ∈ αset

2) → (x ∈ α
eq
2 (a2, a

′
2)) → (b2, b

′
2 ∈ ObH) → (y ∈ HomH(b2, b

′
2))

→ (c2 ∈ HomH(p1(a2, b2), q1(a2, b2)) → (c′2 ∈ HomH(p2(a
′
2, b

′
2), q2(a

′
2, b

′
2))

→ SurH(p1(a2, b2), q1(a
′
2, b

′
2), c2 · q1(x, y), p1(x, y) · c

′
2)

→ SurH(p2(a2, b2), q2(a
′
2, b

′
2), S(a2, b2, c2) · q2(x, y), p2(x, y) · S(a

′
2, b

′
2, c

′
2))

Note that will S will be a functor.

35

D.3.4 The surface constructor

T : (a3 ∈ αset
3) → (b3 ∈ ObH) → (c3 ∈ HomH(p3, q3)) → SurH(p4, q4, g1, h1) → SurH(p5, q5, g2, h2)

D.4 Sketch of proof of the induction principle

Assume x : H ⊢ B(x), and that we have translations of the point, path and
surface constructors. Then we have a set Bx for each x ∈ ObH , and a set
Bp(b, b

′) for each p ∈ HomH(a, a′), b ∈ Ba and b′ ∈ Ba′ . Moreover we have a
composition, inverse and identities of such elements.

We want to define a term f : (x : H) _ B(x) satisfying the equations

f(r(a1, b1)) = r̃(a1, b1, f(b1))
apdf (s(a2, b2, c2)) = s̃(a2, b2, f(b2), c2,apdf (c2))

apd2
f (t(a3, b3, c3, d3)) = t̃(a3, b3, f(b3), c3,apdf (c3), d3,apd

2
f (d3))

We need to define the function on sets, and then on arrows and finally check
it respect the equivalence relation induced by SurH .

D.4.1 Definition on objects and arrows

We simply define f0 : (x ∈ ObH) → Bx using the underlying function of r̃
(noted R̃) on R. So we have a function which maps x ∈ ObH to an element of
Bx, with f0(R(a1, b1)) = R̃(a1, b1, f0(b1))

Then we need its action on arrow. We would like to define f1 : (a, b ∈
ObH) → (p ∈ HomH(a, b)) → Bp(f0(a), f0(b)). We proceed by induction on
HomH .

• For identity, inverse and composition we simply use the identity, inverse
and composition of B. So we guarantee that it will be a functor.

• In the case of an apR, we assume a1, a
′
1 ∈ αset

1 , x ∈ α
eq
1 (a1, a

′
1), b1, b

′
1 ∈

ObH , and y ∈ HomH(b1, b
′
1). By induction hypothesis we have f1(y) ∈

By(f0(b1), f0(b
′
1)). We want something inBapR(x,y)(f0(R(a1, b1)), f0(R(a

′
1, b

′
1))),

that is BapR(x,y)(R̃(a1, b1, f0(b1)), R̃(a
′
1, b

′
1, f0(b

′
1))). So, since r̃ is a term

we can use apdr̃(x, y, f1(y)).

• For path constructor we simply define f1(S(a2, b2, c2)) = S̃(a2, b2, f0(b2), c2, f1(c2))
where S̃ is the underlying function of s̃.

D.4.2 A sketch of verification that f1 respects SurH

We want to show that if SurH(a, b, p, q) is inhabited, then f1(p) = f1(q) (the
equality is set-theoretic). It is even more sketchy than what comes before.

We proceed by induction on SurH .

• The cases of identity, inverse and composition follow from reflexivity, sym-
metry and transitivity of equality

36

• The cases of the groupoid rules and whiskerings follows from the fact that
f1 is a functor.

• If the rules is certifying that f is a term then it follows from the fact that
f1(apR(x, y)) = apr̃(x, y, f1(y)), and that f1 and apr̃ are functors.

• The case of congS follows from the fact that f1(S(a2, b2, y)) = s̃(a2, b2, f0(b2), y, f1(y)).
The case of compS is harder to see, we would need to go into the details
of lemma 7.

• The case of the surface constructor should follow from the underlying
function of t̃, using equalities relating f1 and T 2

t .

37

	Introduction
	An example of a HIT of level 1 : Combinatory logic
	Notations
	Some informal homotopy type theory
	Combinatory logic as a HIT of level 1
	Combinatory logic as a setoid

	The setoid model
	Contexts, types and terms
	Contexts and non-dependent types
	Types
	Terms

	Some type constructors
	Non-dependent -types
	Dependent -types
	Intensional identity types
	Heterogeneous identity types

	The general schema for HITs of level 1
	Usual inductive families
	Back to combinatory logic
	Building the schema
	A first try
	Syntax of the constructors
	The induction principle : why we need a translation

	The schema

	Conclusion
	The translations
	The translation Tt
	The translation Tf

	The setoid model as a CWF
	A category with family
	Contexts
	Types
	Terms
	Substitution
	Context comprehension
	A first theorem

	Some type constructors
	-types
	Intensional Identity types
	Heterogeneous identity types
	Existence of apdf

	The setoid model supports HIT of level 1
	Definition
	Definition of ObH
	Definition of HomH
	The constructors

	Sketch of proof for the induction principle

	Sketch of level 2
	A schema for level 2
	Assumption on the model
	Syntax of the constructors
	Extending the translations
	The induction principle

	Towards the interpretation in the groupoid model
	Presentation
	Construction of ObH and HomH

	Construction of SurH
	Groupoid and equivalence
	R is a term
	S is a term
	The surface constructor

	Sketch of proof of the induction principle
	Definition on objects and arrows
	A sketch of verification that f1 respects SurH

